Descrizione del progetto
Plasma modulato in modo rapido per lo sfruttamento intensivo dell’energia
Di fronte all’intensificarsi della crisi energetica globale, vi è una necessità di risorse rinnovabili maggiore che mai. Il progetto SCOPE introduce un approccio rivoluzionario che utilizza l’energia rinnovabile in tre importanti reazioni industriali. Il plasma non termico, a temperature e pressioni prossime a quelle ambiente, potrebbe potenzialmente convertire molecole di piccole dimensioni e a bassa reattività. A sua volta, ciò produce un netto calo dell’impronta di carbonio, che può diminuire del 90 %. Il progetto si propone di perseguire un approccio altamente innovativo, prevedendo la simbiosi del plasma non termico con la catalisi. SCOPE introduce inoltre un concetto completamente nuovo di rete di nano e microplasma mediante una nuova progettazione degli elettrodi che genera il plasma sulla superficie catalitica, contribuendo a superare il problema del trasporto a lunga distanza.
Obiettivo
The SCOPE project will introduce a ground-breaking approach to use renewable energy in three major industrial reactions: 1) N2 fixation, 2) CH4 valorization and 3) CO2 conversion to liquid solar fuels. We will use non-thermal plasma, which has large potential to convert these small (low reactive) molecules under near ambient temperature and pressure, particularly for distributed processes based on renewable energy. The new processes have drastically lower carbon footprint (up to over 90% with respect to current ones). Furthermore, CO2 conversion is crucial for a world-based distribution of renewable energy. However, the selectivity and energy efficiency of plasma technologies for these reactions are too low, making radically new approaches necessary.
The Project idea is to realize a highly innovative approach for non-thermal plasma symbiosis with catalysis. By inducing excited states in solid catalysts to work in synergy with the excited short-lived plasma species, we introduce a brand new idea for catalyst-plasma symbiosis. In addition, we introduce a fully new concept of nano-/micro-plasma array through a novel electrode design, to generate the plasma at the catalyst surface, thereby overcoming long distance transport. By embedding ferro-magnetic nano-domains in the catalyst support and inducing radiofrequency heating, we create fast temperature modulations directly at the catalyst active sites. Combining these elements, the project will overcome the actual limits and enhance the selectivity and energy efficiency to levels suitable for exploitation. This requires a synergy over different scale elements: nano at catalyst, micro at the level of modelling plasma generated species, milli at the reactor scale and mega at the plant level for sustainability-driven opportunity guidance and impact assessment by Life-Cycle-Assessment. The synergy value derives from the integration of the PI competencies over this entire dimensional-scale level.
Campo scientifico
- engineering and technologyelectrical engineering, electronic engineering, information engineeringinformation engineeringtelecommunicationsradio technologyradio frequency
- engineering and technologyenvironmental engineeringenergy and fuelsrenewable energy
- natural sciencesbiological sciencesbiological behavioural sciencesethologybiological interactions
- natural scienceschemical sciencescatalysis
- engineering and technologyenvironmental engineeringenergy and fuelsenergy conversion
Parole chiave
Programma(i)
Argomento(i)
Meccanismo di finanziamento
ERC-SyG - Synergy grantIstituzione ospitante
98122 Messina
Italia