Projektbeschreibung
Forschungsausbildungsnetz für maschinelles Lernen in der Präzisionsmedizin
Die Gesundheitsversorgung gestaltet sich digitaler, und immer mehr Patientendaten, von der molekularen Ebene bis hin zur Gesundheitsgeschichte einzelner Personen, sind in elektronischer Form verfügbar. Die Verknüpfung menschlicher genetischer Variationen mit phänotypischen Merkmalen auf Populationsebene würde das Verständnis von Krankheitsmechanismen erheblich verbessern und damit den Weg für eine personalisierte Vorsorge und Therapie ebnen. Aufgrund der enormen Datenmengen, die es zu analysieren gilt, erfordert die erfolgreiche Suche nach Assoziationen zwischen genetischen Merkmalen und den entsprechenden phänotypischen Eigenschaften leistungsstarke computergestützte Werkzeuge. Das über die Marie-Skłodowska-Curie-Maßnahmen finanzierte MLFPM2018-Netz führender europäischer Forschungsinstitute im Bereich des maschinellen Lernens und der statistischen Genetik bildet 14 Nachwuchsforschende zu einer neuen Generation wissenschaftlicher Sachverständiger aus, die sich den Herausforderungen des neuen digitalisierten Zeitalters im Gesundheitswesen stellen.
Ziel
Healthcare is entering the digital era: More and more patient data, from the molecular level of genome sequences to the level of image phenotypes and health history, are available in digital form. Exploring this big health data promises to reveal new insights into disease mechanisms and therapy outcomes. Ultimately, the goal is to exploit these insights for Precision Medicine, which hopes to offer personalized preventive care and therapy selection for each patient.
A technology with transformational potential in analysing this health data is Machine Learning. Machine Learning strives to discover new knowledge in form of statistical dependencies in large datasets. Mining health data is, however, not a simple direct application of established machine learning techniques. On the contrary, the emerging population-scale and ultra-high dimensionality of health data creates the need to develop Machine Learning algorithms that can successfully operate at this scale. Overcoming these frontiers in Machine Learning is key to making the vision of Precision Medicine a reality.
To meet this challenge, Europe urgently needs a new generation of scientists with knowledge in both machine learning and in health data analysis, who are extremely rare at a global scale. Our ETN’s goal is to close this gap, by bringing together leading European research institutes in Machine Learning and Statistical Genetics, both from the private and public sector, to train 14 early stage researchers. These scientists will help to shape the future of this important topic and increase Europe’s competitiveness in this domain, which will have severe academic and industrial impact in the future and has the potential to shape the healthcare and high tech sector in Europe in the 21st century.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
Das Projektteam hat die Klassifizierung dieses Projekts bestätigt.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
Das Projektteam hat die Klassifizierung dieses Projekts bestätigt.
- Naturwissenschaften Informatik und Informationswissenschaften Datenwissenschaften
- Naturwissenschaften Biowissenschaften Genetik
- Medizin- und Gesundheitswissenschaften Gesundheitswissenschaften personalisierte Medizin
- Naturwissenschaften Mathematik angewandte Mathematik Statistik und Wahrscheinlichkeit
- Naturwissenschaften Informatik und Informationswissenschaften künstliche Intelligenz maschinelles Lernen
Schlüsselbegriffe
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen -
H2020-EU.1.3.1. - Fostering new skills by means of excellent initial training of researchers
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
MSCA-ITN - Marie Skłodowska-Curie Innovative Training Networks (ITN)
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) H2020-MSCA-ITN-2018
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenKoordinator
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
8092 Zuerich
Schweiz
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.