Descrizione del progetto
Le previsioni teoriche a elevata precisione sono fondamentali per la ricerca sulle onde gravitazionali
L’osservazione di onde gravitazionali di LIGO/VIRGO ha aperto una nuova era per l’astronomia. Il potenziale di scoperta di questo campo emergente dipende dalla capacità di formulare previsioni teoriche precise in base all’analisi dei dati e all’interpretazione dei segnali. L’obiettivo del progetto LHCtoLISA, finanziato dall’UE, è quello di superare i limiti della comprensione analitica nelle dinamiche gravitazionali attraverso il quadro della «teoria del campo efficace». Il formalismo innovativo recentemente sviluppato dal progetto è stato determinante per la costruzione di un banco modello all’avanguardia. I calcoli estremamente accurati che il progetto eseguirà potrebbero avere implicazioni enormi, dal rilevamento di materia fortemente interagente alla possibile scoperta di oggetti esotici compatti e presunte particelle ultraleggere in natura.
Obiettivo
The nascent field of gravitational wave (GW) science will be an interdisciplinary subject, enriching different branches of physics, yet the associated computational challenges are enormous. Faithful theoretical templates are a compulsory ingredient for successful data analysis and reliable physical interpretation of the signals. This is critical, for instance, to study the equation of state of neutron stars, the nature of black holes, and binary formation channels. However, while current templates for compact binary sources may be sufficient for detection and crude parameter estimation, they are too coarse for precision physics with GW data. We then find ourselves in a situation in which, for key processes within empirical reach, theoretical uncertainties may dominate. To move forward, profiting the most from GW observations, more accurate waveforms will be needed.
I have played a pioneering role in the development and implementation of a new formalism, known as the ‘effective field theory approach’, which has been instrumental for the construction of the state-of-the-art GW template bank. The goal of my proposal is thus to redefine the frontiers of analytic understanding in gravity through the effective field theory framework. Even more ambitiously, to go beyond the current computational paradigm with powerful tools which have been crucial for `new-physics' searches at the Large Hadron Collider.
The impact of the high-accuracy calculations I propose to undertake will be immense: from probes of dynamical spacetime and strongly interacting matter, to the potential to discover exotic compact objects and ultra-light particles in nature. Furthermore, GW observations scan gravity in a regime which is otherwise unexplored. Consequently, the coming decade will tell whether Einstein's theory withstands precision scrutiny. In summary, my program will provide novel techniques and key results that will enable foundational investigations in physics through GW precision data.
Campo scientifico
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
- natural sciencescomputer and information sciencesdata science
- natural sciencesphysical sciencestheoretical physicsparticle physicsparticle accelerator
- natural sciencesphysical sciencesastronomyobservational astronomygravitational waves
- natural sciencesphysical sciencesastronomystellar astronomyneutron stars
- natural sciencesphysical sciencesastronomyastrophysicsblack holes
Parole chiave
Programma(i)
Argomento(i)
Meccanismo di finanziamento
ERC-COG - Consolidator GrantIstituzione ospitante
22607 Hamburg
Germania