Projektbeschreibung
Entwicklung einer neuen Quantenplattform auf Basis von Arrays mit 2D-Penning-Fallen
In der Quanteninformatik wurden rasche Fortschritte erzielt, wobei Quantenkontrolle hoher Präzision bei mikrofabrizierten Radiofrequenz-Ionenfallen demonstriert wird, während das problematische Radiofrequenz-Potenzial bei der Verwendung eines einheitlichen Magnetfelds eliminiert wird. Das EU-finanzierte Projekt IONPEN baut auf diesen Fortschritten auf und hat sich vorgenommen, eine neue Quantencomputer- und Simulationsplattform zu entwickeln, die auf skalierbaren 2D-Arrays aus Ionen in mikrofabrizierten Penning-Fallen basiert. Es wird mit Vielteilchen interagierende Spin-Hamiltonoperatoren zu Ionenzahlen demonstrieren, die von herkömmlichen Computern unerreichbar sind. So wird es einen skalierbaren Quantensimulator erstellen, der neue Erkenntnisse über die Verbindungen zwischen der mikroskopischen Physik und entstehenden Verhaltensweisen liefert. Das Projekt wird sich unter anderem auf die Gebiete fundamentale Physik, Chemie, Materialwissenschaft und Verschlüsselung auswirken.
Ziel
This project will develop a new platform for quantum computation and quantum simulation based on scalable two-dimensional arrays of ions in micro-fabricated Penning traps. It builds upon the rapid advances demonstrating high precision quantum control in micro-fabricated radio-frequency ion traps while eliminating the most problematic element - the radio-frequency potential - using a uniform magnetic field. This offers a significant advantage: since the magnetic field is uniform it provides confinement at any position for which a suitable static quadrupole can be generated. By contrast, r.f. potentials only provide good working conditions along a line. This changed perspective provides access to dense two-dimensional strongly interacting ion lattices, with the possibility to re-configure these lattices in real time. By combining closely-spaced static two-dimensional ion arrays with standard laser control methods, the project will demonstrate previously inaccessible many-body interacting spin Hamiltonians at ion numbers which are out of the reach of classical computers, providing a scalable quantum simulator with the potential to provide new insights into the links between microscopic physics and emergent behavior. Through dynamic control of electrode voltages, reconfigurable two-dimensional arrays will be used to realize a scalable quantum computing architecture, which will be benchmarked through landmark experiments on measurement-based quantum computation and high error-threshold surface codes which are natural to this configuration. Realizing multi-dimensional connectivity between qubits is a major problem facing a number of leading quantum computing architectures including trapped ions. By solving this problem, the proposed project will pave the way to large-scale universal quantum computing with impacts from fundamental physics through to chemistry, materials science and cryptography.
Wissenschaftliches Gebiet
- engineering and technologyelectrical engineering, electronic engineering, information engineeringinformation engineeringtelecommunicationsradio technologyradio frequency
- natural sciencescomputer and information sciencescomputer securitycryptography
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringcomputer hardwarequantum computers
- natural sciencesphysical sciencesopticslaser physics
Schlüsselbegriffe
Programm/Programme
Thema/Themen
Finanzierungsplan
ERC-COG - Consolidator GrantGastgebende Einrichtung
8092 Zuerich
Schweiz