Project description
Bipedal locomotion in robotics gets new drive
Despite significant development of humanoid robotics in the last 15 years, achieving bipedal locomotion in terms of speed and versatility is still beyond our reach. The NatDyReL project aims at a fundamental paradigm shift in the design and control of humanoid robots. This paves the way for a new generation of intrinsically compliant robots that are capable of adjusting their open loop actuator impedance in real-time to the task. Most importantly, the developed methods will allow for their use and adaptation in other morphologies, including multi-limbed walking or climbing robots.
Objective
Despite the significant progress made in the field of humanoid robotics over the last 10-15 years, bipedal locomotion in robotics is still far from human performance in terms of speed, versatility, and robustness. The design of most humanoid robots nowadays is dominated by the aim at high rigidity and position accuracy in the motor units.
In contrast, the NatDyReL project aims at a fundamental shift of paradigm in the design and control of humanoid robots, towards a new generation of intrinsically compliant robots that can adjust their open loop actuator impedance in real-time to the task. We believe that the maturing technology of variable impedance actuators in combination with novel control approaches for the intrinsically elastic dynamics has the potential of bringing humanoid locomotion and multi-contact motions to a new level in terms of energy-efficiency and execution speeds more similar to the human archetype. However, to fully utilize the ultimate benefits promised by variable impedance actuators, i.e. to store and release energy as well as to provide physical protection against shocks caused by impacts, it is necessary to exploit the natural compliant whole body dynamics on all levels of the system design, planning and control hierarchies.
This project follows two scientific tracks for achieving (a) energetically efficient and high performant legged locomotion and (b) robust and dynamic contact transitions and in-contact motions for whole body locomotion in uncertain and confined spaces. As a strong basis to the mentioned application oriented objectives, we also aim at fundamental contributions on the control challenges related to novel variable impedance actuator technologies.
The project is expected to make a strong impact on bipedal humanoid locomotion. Moreover, the developed methods will be sufficiently general such that they can also be transferred to other morphologies such as e.g. multi-limbed walking or climbing robots.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering robotics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2018-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1040 Wien
Austria
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.