Project description
Paving the way for efficient haematopoietic stem cell modification
Gene transfer and editing technologies expose haematopoietic stem cells (HSC) to components recognisable by host antiviral factors that restrict their genetic engineering. The project team have identified an antiviral factor that blocks gene transfer in HSC and have discovered small molecules that counteract it. The EU-funded ImmunoStem project aims to identify the antiviral factors that prevent modifications of HSC, and the means to mitigate their effects. The project will build on the innovative concept that a better understanding of the crosstalk between HSC and viral vectors will uncover immune sensors and effectors to avoid. This work will lead to a novel paradigm of innate pathogen recognition that will allow the development of cutting-edge cell and gene therapies to fight infectious and autoimmune diseases.
Objective
The low gene manipulation efficiency of human hematopoietic stem cells (HSC) remains a major hurdle for sustainable and broad clinical application of innovative therapies for a wide range of disorders. Indeed, high vector doses and prolonged ex vivo culture are still required for clinically relevant levels of gene transfer even with the most established lentiviral vector-based delivery platforms.
Current and emerging gene transfer and editing technologies expose HSC to components potentially recognized by host antiviral factors and nucleic acid sensors that likely restrict their genetic engineering and contribute to broad individual variability in clinical outcomes observed in recent gene therapy trials. Nevertheless, specific effectors are yet to be identified in HSC. We have recently identified an antiviral factor that potently blocks gene transfer in HSC and have discovered small molecules that efficiently counteract it. This is the first example of how manipulating a single host factor can significantly impact gene transfer efficiencies in HSC but likely represents the mere tip of the iceberg of the plethora of innate sensing mechanisms potentially hampering genetic manipulation of this primitive cell compartment.
This proposal aims to identify the antiviral factors and innate sensing pathways that prevent efficient modification of HSC and to mitigate their effects using methods developed through a thorough understanding of their mechanisms of action. My approach builds on the innovative concept that understanding the crosstalk between HSC and viral vectors will instruct us on which immune sensors and effectors to avoid and how, with direct implications for all gene engineering technologies. Successful completion of this project will deliver broadly exportable novel paradigms of innate pathogen recognition that will allow ground-breaking progress in the development of cutting-edge cell and gene therapies and to fight infectious and autoimmune diseases.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- medical and health sciences medical biotechnology genetic engineering
- medical and health sciences basic medicine immunology
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering sensors
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2018-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
27100 Pavia
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.