Descripción del proyecto
Diseño de constructos de autoensamblaje disipativo
Casi todos los materiales sintéticos son estáticos, lo que contrasta con los organismos vivos, que son estructuras que se autoensamblan dinámicamente. El autoensamblaje disipativo es omnipresente en la naturaleza y da lugar a estructuras y propiedades complejas como, por ejemplo, la autorregeneración, la homeostasis y el camuflaje. Desarrollar los medios para diseñar constructos sintéticos de autoensamblaje disipativo tendría una gran repercusión en varias industrias, incluidos los sectores farmacéutico y energético. En el proyecto LifeLikeMat, financiado con fondos europeos, se emplearán reacciones químicas como la oxidación de azúcares y la conversión de CO2 en metanol para favorecer el autoensamblaje disipativo. También se desarrollarán nuevos modos de autoensamblaje intrínsecamente disipativo, en los que los componentes básicos activados son intrínsecamente inestables. El proyecto proporcionará nuevos tipos de materiales dinámicos con características como, por ejemplo, vida útil ajustable, conductividad eléctrica dependiente del tiempo e intercambio dinámico de componentes básicos.
Objetivo
"Living organisms are sophisticated self-assembled structures that exist and operate far from thermodynamic equilibrium and, as such, represent the ultimate example of dissipative self-assembly. They remain stable at highly organized (low-entropy) states owing to the continuous consumption of energy stored in ""chemical fuels"", which they convert into low-energy waste. Dissipative self-assembly is ubiquitous in nature, where it gives rise to complex structures and properties such as self-healing, homeostasis, and camouflage. In sharp contrast, nearly all man-made materials are static: they are designed to serve a given purpose rather than to exhibit different properties dependent on external conditions. Developing the means to rationally design dissipative self-assembly constructs will greatly impact a range of industries, including the pharmaceutical and energy sectors.
The goal of the proposed research program is to develop novel principles for designing dissipative self-assembly systems and to fabricate a range of dissipative materials based on these principles. To achieve this goal, we will employ novel, unconventional approaches based predominantly on integrating organic and colloidal-inorganic building blocks.
Specifically, we will (WP1) drive dissipative self-assembly using chemical reactions such as polymerization, oxidation of sugars, and CO2-to-methanol conversion, (WP2) develop new modes of intrinsically dissipative self-assembly, whereby the activated building blocks are inherently unstable, and (WP3&4) conceive systems whereby self-assembly is spontaneously followed by disassembly.
The proposed studies will lead to new classes of ""driven"" materials with features such as tunable lifetimes, time-dependent electrical conductivity, and dynamic exchange of building blocks. Overall, this project will lay the foundations for developing new synthetic dissipative materials, bringing us closer to the rich and varied functionality of materials found in nature."
Ámbito científico
Palabras clave
Programa(s)
Régimen de financiación
ERC-COG - Consolidator GrantInstitución de acogida
3400 Klosterneuburg
Austria