Description du projet
Concevoir des structures dissipatives capables de s’auto-assembler
La quasi-totalité des matériaux fabriqués par l’homme sont statiques, par opposition aux organismes vivants qui forment des structures capables de s’auto-assembler de manière dynamique. Omniprésent dans la nature, l’auto-assemblage dissipatif donne naissance à des structures et confère des propriétés complexes comme l’auto-guérison, l’homéostasie et le camouflage. Le développement de moyens de concevoir des structures synthétiques dissipatives capables de s’auto-assembler aurait une incidence immense sur plusieurs industries, notamment les secteurs pharmaceutique et énergétique. Le projet LifeLikeMat, financé par l’UE, aura recours à des réactions chimiques telles que l’oxydation des sucres et la transformation du CO2 en méthanol pour susciter l’auto-assemblage dissipatif. Il développera également de nouveaux modes d’auto-assemblage intrinsèquement dissipatif, au sein desquels les éléments constitutifs activés se trouvent dans un état intrinsèquement instable. Le projet établira de nouvelles classes de matériaux «stimulés» offrant des fonctionnalités comme des durées de vie réglables, une conductivité électrique dépendant du temps et un échange dynamique des éléments constitutifs.
Objectif
"Living organisms are sophisticated self-assembled structures that exist and operate far from thermodynamic equilibrium and, as such, represent the ultimate example of dissipative self-assembly. They remain stable at highly organized (low-entropy) states owing to the continuous consumption of energy stored in ""chemical fuels"", which they convert into low-energy waste. Dissipative self-assembly is ubiquitous in nature, where it gives rise to complex structures and properties such as self-healing, homeostasis, and camouflage. In sharp contrast, nearly all man-made materials are static: they are designed to serve a given purpose rather than to exhibit different properties dependent on external conditions. Developing the means to rationally design dissipative self-assembly constructs will greatly impact a range of industries, including the pharmaceutical and energy sectors.
The goal of the proposed research program is to develop novel principles for designing dissipative self-assembly systems and to fabricate a range of dissipative materials based on these principles. To achieve this goal, we will employ novel, unconventional approaches based predominantly on integrating organic and colloidal-inorganic building blocks.
Specifically, we will (WP1) drive dissipative self-assembly using chemical reactions such as polymerization, oxidation of sugars, and CO2-to-methanol conversion, (WP2) develop new modes of intrinsically dissipative self-assembly, whereby the activated building blocks are inherently unstable, and (WP3&4) conceive systems whereby self-assembly is spontaneously followed by disassembly.
The proposed studies will lead to new classes of ""driven"" materials with features such as tunable lifetimes, time-dependent electrical conductivity, and dynamic exchange of building blocks. Overall, this project will lay the foundations for developing new synthetic dissipative materials, bringing us closer to the rich and varied functionality of materials found in nature."
Champ scientifique
Not validated
Not validated
Mots‑clés
Programme(s)
Régime de financement
ERC-COG - Consolidator GrantInstitution d’accueil
3400 Klosterneuburg
Autriche