Descrizione del progetto
Progettare strutture di autoassemblaggio dissipativo
Quasi tutti i materiali prodotti dall’uomo sono statici, al contrario degli organismi viventi che sono strutture dinamicamente autoassemblanti. In natura, l’autoassemblaggio dissipativo è onnipresente, dando origine a strutture e proprietà complesse come l’autorigenerazione, l’omeostasi e la mimetizzazione. Sviluppare i mezzi per progettare strutture sintetiche di autoassemblaggio dissipativo avrebbe un forte impatto su diversi settori industriali, tra cui quello farmaceutico e dell’energia. Il progetto LifeLikeMat, finanziato dall’UE, utilizzerà reazioni chimiche come l’ossidazione degli zuccheri e la conversione da CO2 a metanolo per guidare l’autoassemblaggio dissipativo. Svilupperà inoltre nuove modalità di autoassemblaggio intrinsecamente dissipativo, per cui gli elementi costitutivi attivati sono intrinsecamente instabili. Il progetto porterà a nuove classi di materiali «guidati» con caratteristiche quali il ciclo vitale regolabile, la conducibilità elettrica dipendente dal tempo e lo scambio dinamico degli elementi costitutivi.
Obiettivo
"Living organisms are sophisticated self-assembled structures that exist and operate far from thermodynamic equilibrium and, as such, represent the ultimate example of dissipative self-assembly. They remain stable at highly organized (low-entropy) states owing to the continuous consumption of energy stored in ""chemical fuels"", which they convert into low-energy waste. Dissipative self-assembly is ubiquitous in nature, where it gives rise to complex structures and properties such as self-healing, homeostasis, and camouflage. In sharp contrast, nearly all man-made materials are static: they are designed to serve a given purpose rather than to exhibit different properties dependent on external conditions. Developing the means to rationally design dissipative self-assembly constructs will greatly impact a range of industries, including the pharmaceutical and energy sectors.
The goal of the proposed research program is to develop novel principles for designing dissipative self-assembly systems and to fabricate a range of dissipative materials based on these principles. To achieve this goal, we will employ novel, unconventional approaches based predominantly on integrating organic and colloidal-inorganic building blocks.
Specifically, we will (WP1) drive dissipative self-assembly using chemical reactions such as polymerization, oxidation of sugars, and CO2-to-methanol conversion, (WP2) develop new modes of intrinsically dissipative self-assembly, whereby the activated building blocks are inherently unstable, and (WP3&4) conceive systems whereby self-assembly is spontaneously followed by disassembly.
The proposed studies will lead to new classes of ""driven"" materials with features such as tunable lifetimes, time-dependent electrical conductivity, and dynamic exchange of building blocks. Overall, this project will lay the foundations for developing new synthetic dissipative materials, bringing us closer to the rich and varied functionality of materials found in nature."
Campo scientifico
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
Parole chiave
Programma(i)
Argomento(i)
Meccanismo di finanziamento
ERC-COG - Consolidator GrantIstituzione ospitante
3400 Klosterneuburg
Austria