Skip to main content
European Commission logo print header

Dissipative self-assembly in synthetic systems: Towards life-like materials

Projektbeschreibung

Entwurf dissipativer Selbstorganisationskonstrukte

Fast alle künstlichen Materialien sind statisch, im Gegensatz zu lebenden Organismen, die dynamisch selbstorganisierende Strukturen sind. Die dissipative Selbstorganisation ist in der Natur allgegenwärtig und führt zu komplexen Strukturen und Eigenschaften wie Selbstheilung, Homöostase und Tarnung. Die Entwicklung von Methoden für den Entwurf synthetischer dissipativer Selbstorganisationskonstrukte hätte große Auswirkungen auf mehrere Branchen wie die Pharmaindustrie und den Energiesektor. Das EU-finanzierte Projekt LifeLikeMat wird chemische Reaktionen wie die Oxidation von Zucker und die Umwandlung von CO2 in Methanol nutzen, um die dissipative Selbstorganisation voranzutreiben. Darüber hinaus wird es auch neue Modi der intrinsisch dissipativen Selbstorganisation entwickeln, wobei die aktivierten Bausteine von Natur aus instabil sind. Das Projekt wird zu neuen Klassen „angetriebener“ Materialien mit Eigenschaften wie einer steuerbaren Lebensdauer, einer zeitabhängigen elektrischen Leitfähigkeit und einem dynamischen Austausch von Bausteinen führen.

Ziel

"Living organisms are sophisticated self-assembled structures that exist and operate far from thermodynamic equilibrium and, as such, represent the ultimate example of dissipative self-assembly. They remain stable at highly organized (low-entropy) states owing to the continuous consumption of energy stored in ""chemical fuels"", which they convert into low-energy waste. Dissipative self-assembly is ubiquitous in nature, where it gives rise to complex structures and properties such as self-healing, homeostasis, and camouflage. In sharp contrast, nearly all man-made materials are static: they are designed to serve a given purpose rather than to exhibit different properties dependent on external conditions. Developing the means to rationally design dissipative self-assembly constructs will greatly impact a range of industries, including the pharmaceutical and energy sectors.

The goal of the proposed research program is to develop novel principles for designing dissipative self-assembly systems and to fabricate a range of dissipative materials based on these principles. To achieve this goal, we will employ novel, unconventional approaches based predominantly on integrating organic and colloidal-inorganic building blocks.

Specifically, we will (WP1) drive dissipative self-assembly using chemical reactions such as polymerization, oxidation of sugars, and CO2-to-methanol conversion, (WP2) develop new modes of intrinsically dissipative self-assembly, whereby the activated building blocks are inherently unstable, and (WP3&4) conceive systems whereby self-assembly is spontaneously followed by disassembly.

The proposed studies will lead to new classes of ""driven"" materials with features such as tunable lifetimes, time-dependent electrical conductivity, and dynamic exchange of building blocks. Overall, this project will lay the foundations for developing new synthetic dissipative materials, bringing us closer to the rich and varied functionality of materials found in nature."

Gastgebende Einrichtung

INSTITUTE OF SCIENCE AND TECHNOLOGY AUSTRIA
Netto-EU-Beitrag
€ 582 125,00
Adresse
Am Campus 1
3400 Klosterneuburg
Österreich

Auf der Karte ansehen

Region
Ostösterreich Niederösterreich Wiener Umland/Nordteil
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten
€ 582 125,00

Begünstigte (2)