Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Prototype for an Ultra Large Structure Assembly Robot

Project description

Autonomous assembly of large structures in space

Future space missions will necessitate structures too large to be self-deployed in one piece. For instance, the next-generation telescope envisioned by astronomers will require assembly in space. In this context, the EU-funded PULSAR project will work on the assembly of a mirror, which requires more care and accuracy than other structures. However, the developed technology will also be applicable to other large structures. PULSAR’s overall concept is aimed at the creation of a fully autonomous, on-orbit robotic assembly system. Its demonstration use case is the high-precision assembly, using a robotic arm, of a set of mirror tiles in order to build the very large primary mirror of a next-generation space telescope.

Objective

Autonomous assembly of large structures in space is a key challenge to implement future missions that will necessitate structures too large to be self-deployed as a single piece. The James Webb Space Telescope has reached this limit and the next generation telescope expected by astronomers, like the High Definition Space Telescope, will therefore require new assembly technologies, in particular autonomous robots. The need for large structures in space goes beyond telescopes and concerns also solar arrays for power plant, light sails to reach outermost regions of the solar system or heat shields to land on Mars.
PULSAR objective is to develop and demonstrate key technologies for in-space assembly of the primary mirror of a 12m diameter telescope. Previously developed building blocks, c.f. first call of the SRC Space Robotics Technology, will be integrated and enhanced for this specific mission, but also to serve future multi-mission applications.
The project focuses on the assembly of a mirror but the developed technology will be applicable to other large structures. Indeed, assembling a mirror requires far more rigor and accuracy than other identified structures. PULSAR is organized in three demonstration tracks to address major challenges of in-space autonomous assembly of telescope: dPAMT, demonstrator of Precise Assembly of Mirror Tiles; dLSAFFE, demonstrator of Large Structure Assembly in Free Floating Environment; dISAS, demonstrator of In-Space Assembly in Simulation.
Although three demonstrators will be developed, the underlying technology will rely on common building blocks whose use and improvement will benefit from the expertise of the PULSAR partners. Building blocks upgrades will then be supplied to their respective maintainers to pursue the standardization of modular and reusable components for space and non-space robotics. PULSAR is responsible of OG5/SIROM, and will contribute to the development of ESROCOS, ERGO, INFUSE and I3DS.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

RIA - Research and Innovation action

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-SPACE-2018-2020

See all projects funded under this call

Coordinator

MAGELLIUM SAS
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 658 750,00
Address
1 RUE ARIANE
31520 Ramonville Saint Agne
France

See on map

SME

The organization defined itself as SME (small and medium-sized enterprise) at the time the Grant Agreement was signed.

Yes
Region
Occitanie Midi-Pyrénées Haute-Garonne
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 658 750,00

Participants (7)

My booklet 0 0