Skip to main content
Weiter zur Homepage der Europäischen Kommission (öffnet in neuem Fenster)
Deutsch Deutsch
CORDIS - Forschungsergebnisse der EU
CORDIS

Combinatorial Structures and Processes

Projektbeschreibung

Antrieb für die Forschung zur Graphentheorie

Die Graphentheorie beschäftigt sich mit Graphen, welche ein Grundbaustein für die Modellierung der paarweisen Beziehungen zwischen Objekten sind. Graphen können für die Modellierung verschiedenster Beziehungen in physikalischen, biologischen, sozialen und Informationssystemen eingesetzt werden. Finanziert über die Marie-Skłodowska-Curie-Maßnahmen wird das Projekt CoSP das Fachwissen der diskreten Mathematik mit theoretischer Computerwissenschaft kombinieren, um mehrere interessante Punkte der Graphentheorie zu erforschen. Dazu gehört die Theorie zu Matchings von Graphen und Hypergraphen, komplexe Algorithmen, Färbungsprobleme und Homomorphismen.

Ziel

The project brings together combinatorialists of various fields with the aim that they will enrich each other’s techniques. The tool kits they will bring include topology, probability, statistical physics and algebra. These should apply to matching problems (a central topic in combinatorics), algorithmic problems, coloring problems (which are decompositions into independent sets or matchings) and homomorphisms (a generalization of colorings).
One umbrella under which many of these can be gathered is the intersection of two matroids, a notion generalizing that of matchings in bipartite graphs. Researchers are baffled by a strange phenomenon – that moving from one matroid to the intersection of two matroids sometimes costs little. The algorithmic problems are indeed harder, but the difference between min and max in the min-max theorems suffer only a conjectured penalty of 1.
This connects with a second direction of the research, fine grained complexity, which deals with polynomially solvable problems, and aims to prove, under widely believed assumptions, lower bounds on the exponents in the polynomial bounds. A major question in the field is proving similar tight bounds for approximation problems.
A direction connecting matchings, colorings and homomorphisms was initiated recently in statistical physics. It investigates typical algorithmic complexity, of computational problems taken under some probability distribution. While the worst case complexity questions are difficult in general and not clearly practically relevant, when we restrict to a given probability distribution of instances and when we are interested in high probability results, progress has been made, that has contributed also algorithmic insights beyond the probabilistic setting. We propose to address several outstanding open questions from the field.
Finally we will work on a deep connection, studied by some of the researchers in the project, between Ramsey theory, Model theory and graph homomorphisms.

Wissenschaftliches Gebiet (EuroSciVoc)

CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.

Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen

Schlüsselbegriffe

Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).

Programm/Programme

Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.

Thema/Themen

Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.

Finanzierungsplan

Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.

MSCA-RISE - Marie Skłodowska-Curie Research and Innovation Staff Exchange (RISE)

Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen

Aufforderung zur Vorschlagseinreichung

Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.

(öffnet in neuem Fenster) H2020-MSCA-RISE-2018

Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigen

Koordinator

UNIVERZITA KARLOVA
Netto-EU-Beitrag

Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.

€ 575 000,00
Adresse
OVOCNY TRH 560/5
116 36 Praha 1
Tschechien

Auf der Karte ansehen

Region
Česko Praha Hlavní město Praha
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten

Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.

€ 694 600,00

Beteiligte (2)

Partner (5)

Mein Booklet 0 0