Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Global Under-Resourced MEedia Translation

Description du projet

Améliorer la traduction automatique neuronale pour les langues à faibles ressources

Dans un monde où il est devenu impératif de disposer d’informations précises et opportunes, les journalistes ont constamment besoin d’outils appropriés de traduction rapide et précise pour des langues disposant de très peu de ressources. Bien que la technologie de traduction automatique neuronale progresse rapidement, elle n’a pas encore réussi à fournir des traductions utilisables pour la plupart des paires de langues du monde en raison du manque de données et de corpus parallèles. Le projet GoURMET, financé par l’UE, a pour objectif d’améliorer la robustesse et l’applicabilité de la traduction automatique neuronale pour les paires de langues et les domaines offrant peu de ressources. Le projet se concentrera sur la création de contenu global, en fournissant des traductions automatiques à corriger par des humains, et sur la surveillance des médias d’information internationaux pour les paires de langues à faibles ressources.

Objectif

Machine translation (MT) is an increasingly important technology for supporting communication in a globalised world. MT technology has gradually increased over the last ten years, but recent advances in neural machine translation (NMT), have resulted in significant interest in industry and have lead to very rapid adoption of the new paradigm (eg. Google, Facebook, UN, World International Patent Office). Although these models have shown significant advances in state-of-the-art performance they are data intensive and require parallel corpora of many millions of human translated sentences for training. Neural Machine translation is currently not able to deliver usable translations for the vast majority of language pairs in the world. This is especially problematic for our user partners, the BBC and DW who need access to fast and accurate translation for languages with very few resources.

The aim of GoURMET is to significantly improve the robustness and applicability of neural machine translation for low-resource language pairs and domains.

GoURMET has five objectives:
- Development of a high-quality machine translation for under-resourced language pairs and domains;
- Adaptable to new and emerging languages and domains;
- Development of tools for analysts and journalists;
- Sustainable, maintainable platform and services;
- Dissemination and communication of project results to stakeholders and user group.

The project will focus on two use cases:
- Global content creation - managing content creation in several languages efficiently by providing machine translations for correction by humans;
- Media monitoring for low resource language pairs - tools to address the challenge of international news monitoring problem.

The outputs of the project will be field-tested at partners BBC and DW, and the platform will be further validated through innovation intensives such as the BBC NewsHack.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

RIA - Research and Innovation action

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) H2020-ICT-2018-20

Voir tous les projets financés au titre de cet appel

Coordinateur

THE UNIVERSITY OF EDINBURGH
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 948 047,50
Adresse
OLD COLLEGE, SOUTH BRIDGE
EH8 9YL Edinburgh
Royaume-Uni

Voir sur la carte

Région
Scotland Eastern Scotland Edinburgh
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 948 047,50

Participants (4)

Mon livret 0 0