Skip to main content
Przejdź do strony domowej Komisji Europejskiej (odnośnik otworzy się w nowym oknie)
polski polski
CORDIS - Wyniki badań wspieranych przez UE
CORDIS

Global Under-Resourced MEedia Translation

Opis projektu

Bardziej precyzyjne neuronalne tłumaczenie maszynowe dla języków o ograniczonych zasobach

W świecie, w którym dostęp do precyzyjnych i aktualnych informacji stał się koniecznością, dziennikarze stale potrzebują odpowiednich narzędzi do szybkiego i dokładnego tłumaczenia w przypadku języków o bardzo ograniczonych zasobach. Pomimo szybkiego rozwoju neuronalne tłumaczenie maszynowe nie jest jeszcze w stanie dostarczyć wysokiej jakości tłumaczeń w większości par językowych ze względu na brak danych i paralelnych korpusów językowych. Zespół finansowanego przez UE projektu GoURMET chce poprawić skuteczność i praktyczność neuronalnego tłumaczenia maszynowego dla par językowych i dziedzin o ograniczonych zasobach. Naukowcy skupią się na tworzeniu treści globalnych, których tłumaczenia maszynowe będą poprawiane przez rodzimych użytkowników danego języka, oraz na monitorowaniu międzynarodowych mediów informacyjnych dla par językowych o ograniczonych zasobach.

Cel

Machine translation (MT) is an increasingly important technology for supporting communication in a globalised world. MT technology has gradually increased over the last ten years, but recent advances in neural machine translation (NMT), have resulted in significant interest in industry and have lead to very rapid adoption of the new paradigm (eg. Google, Facebook, UN, World International Patent Office). Although these models have shown significant advances in state-of-the-art performance they are data intensive and require parallel corpora of many millions of human translated sentences for training. Neural Machine translation is currently not able to deliver usable translations for the vast majority of language pairs in the world. This is especially problematic for our user partners, the BBC and DW who need access to fast and accurate translation for languages with very few resources.

The aim of GoURMET is to significantly improve the robustness and applicability of neural machine translation for low-resource language pairs and domains.

GoURMET has five objectives:
- Development of a high-quality machine translation for under-resourced language pairs and domains;
- Adaptable to new and emerging languages and domains;
- Development of tools for analysts and journalists;
- Sustainable, maintainable platform and services;
- Dissemination and communication of project results to stakeholders and user group.

The project will focus on two use cases:
- Global content creation - managing content creation in several languages efficiently by providing machine translations for correction by humans;
- Media monitoring for low resource language pairs - tools to address the challenge of international news monitoring problem.

The outputs of the project will be field-tested at partners BBC and DW, and the platform will be further validated through innovation intensives such as the BBC NewsHack.

Dziedzina nauki (EuroSciVoc)

Klasyfikacja projektów w serwisie CORDIS opiera się na wielojęzycznej taksonomii EuroSciVoc, obejmującej wszystkie dziedziny nauki, w oparciu o półautomatyczny proces bazujący na technikach przetwarzania języka naturalnego. Więcej informacji: Europejski Słownik Naukowy.

Aby użyć tej funkcji, musisz się zalogować lub zarejestrować

Słowa kluczowe

Słowa kluczowe dotyczące projektu wybrane przez koordynatora projektu. Nie należy mylić ich z pojęciami z taksonomii EuroSciVoc dotyczącymi dziedzin nauki.

Program(-y)

Wieloletnie programy finansowania, które określają priorytety Unii Europejskiej w obszarach badań naukowych i innowacji.

Temat(-y)

Zaproszenia do składania wniosków dzielą się na tematy. Każdy temat określa wybrany obszar lub wybrane zagadnienie, których powinny dotyczyć wnioski składane przez wnioskodawców. Opis tematu obejmuje jego szczegółowy zakres i oczekiwane oddziaływanie finansowanego projektu.

System finansowania

Program finansowania (lub „rodzaj działania”) realizowany w ramach programu o wspólnych cechach. Określa zakres finansowania, stawkę zwrotu kosztów, szczegółowe kryteria oceny kwalifikowalności kosztów w celu ich finansowania oraz stosowanie uproszczonych form rozliczania kosztów, takich jak rozliczanie ryczałtowe.

RIA - Research and Innovation action

Wyświetl wszystkie projekty finansowane w ramach tego programu finansowania

Zaproszenie do składania wniosków

Procedura zapraszania wnioskodawców do składania wniosków projektowych w celu uzyskania finansowania ze środków Unii Europejskiej.

(odnośnik otworzy się w nowym oknie) H2020-ICT-2018-20

Wyświetl wszystkie projekty finansowane w ramach tego zaproszenia

Koordynator

THE UNIVERSITY OF EDINBURGH
Wkład UE netto

Kwota netto dofinansowania ze środków Unii Europejskiej. Suma środków otrzymanych przez uczestnika, pomniejszona o kwotę unijnego dofinansowania przekazanego powiązanym podmiotom zewnętrznym. Uwzględnia podział unijnego dofinansowania pomiędzy bezpośrednich beneficjentów projektu i pozostałych uczestników, w tym podmioty zewnętrzne.

€ 948 047,50
Adres
OLD COLLEGE, SOUTH BRIDGE
EH8 9YL Edinburgh
Zjednoczone Królestwo

Zobacz na mapie

Region
Scotland Eastern Scotland Edinburgh
Rodzaj działalności
Higher or Secondary Education Establishments
Linki
Koszt całkowity

Ogół kosztów poniesionych przez organizację w związku z uczestnictwem w projekcie. Obejmuje koszty bezpośrednie i pośrednie. Kwota stanowi część całkowitego budżetu projektu.

€ 948 047,50

Uczestnicy (4)

Moja broszura 0 0