Project description
Pioneering technology for integrated circuits for machine learning
Quantum engineering of two-dimensional materials (2DMs) can support new integrated technology for machine learning and enable the production of devices relying on the combination of vertical and lateral heterostructures. The EU-funded QUEFORMAL project will work on the development of integrated circuits for machine learning in which low-voltage field-effect transistors and non-volatile memories are integrated side by side, exploiting quantum engineering of 2DMs. The project will experimentally demonstrate the construction and running of devices based on lateral and vertical heterostructures of 2DMs for logic-in-memory integrated circuits and prove the potential of this technology for the production of integrated circuits for machine learning.
Objective
We propose the radical vision of a new integrated circuit technology for machine learning where low-voltage field-effect transistors and non-volatile memories are integrated next to each other exploiting quantum engineering of heterostructures of two-dimensional materials (2DMs), i.e. the atom-by-atom design and fabrication of devices which combine vertical and lateral heterostructures (VH and LH, respectively) of 2DMs.
QUEFORMAL pursues a very risky and original proposed solution, with the extremely high potential gain of advancing a science-enabled technology for the fabrication of integrated circuits for machine learning, in a field in which Europe has a strong basic-science leadership, thanks to the pioneering breakthroughs on graphene and 2D materials.
The overall objective and targeted breakthrough of QUEFORMAL is to experimentally demonstrate the fabrication and operation of devices based on LH and VH of 2DMs for logic-in-memory integrated circuits and to show the potential of this technology for the fabrication of integrated circuits for machine learning. Devices include i) lateral heterostructure FETs (LH-FETs) operating at low voltage (0.6 V) fabricated in close vicinity to ii) floating-gate non-volatile memories based on VHs for the gate stack and LHs for the channel (LVH-NVMs), that can be programmed at low voltage (<5 V) with retention time larger than 1 month.
The QUEFORMAL consortium consists of six partners and has unique advantages: Consortium members have proposed and patented the LH-FET concept and have experimentally demonstrated the floating gate non-volatile memory concept using 2D materials.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology nanotechnology nano-materials two-dimensional nanostructures graphene
- natural sciences computer and information sciences artificial intelligence machine learning
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.2. - EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.2.1. - FET Open
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-FETOPEN-2018-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
56126 PISA
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.