European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Experimental access to volcanic eruptions: Driving Observational Potential

Descripción del proyecto

La escucha electrónica de volcanes ayuda a predecir erupciones

La actividad de los sistemas volcánicos explosivos es esencial para la evolución del planeta. Con todo, la limitada comprensión del mecanismo de los procesos eruptivos y poseruptivos impide predecir sus efectos conjuntos. Descubrimientos experimentales recientes avanzan en esta comprensión del mecanismo e incluyen el desarrollo de técnicas de obtención de imágenes en tiempo real basadas en sincrotrón de alta temperatura «in situ» para sistemas de deformación, la vigilancia acústica de procesos de falla y fragmentación en el magma explosivo y las cámaras dinámicas de reacción ambiental de ceniza y gas. En el proyecto EAVESDROP, financiado con fondos europeos, se examinarán estos hallazgos recientes y se llevará el alcance de un método experimental en la vulcanología a su máximo potencial.

Objetivo

The Earth System is impacted continually by dozens of volcanic eruptions per year. Predicting their collective effects is hampered by our incomplete mechanistic understanding of eruptive and post-eruptive processes. The activity of explosive volcanic systems especially, is a key to the evolution of our world, not only for the eruptive catastrophes themselves but also for the massive injection of volcanic materials into the critical zone of the Earth System. (e.g. Ayris and Delmelle, 2012; Baldini et al., 2015; Dingwell, 1996; Dingwell et al., 2012; Martin et al., 2009; Robock, 2000). For this reason - as well as the many pragmatic issues of living with active volcanism – a mechanistic understanding explosive volcanism and the interaction of its products in the Earth System is a grand challenge of modern Earth Sciences.
Fortunately, three recent experimental breakthroughs bring the challenge of mechanistic understanding within our grasp: these are the development of in situ high temperature 1) synchrotron-based real-time imaging techniques for deforming systems (Baker et al., 2012; Wadsworth et al., 2016). 2) acoustic monitoring of failure and fragmentation processes in exploding magma (Arciniega et al., 2015) and 3) dynamic ash-gas environmental reaction chambers (Ayris et al., 2015).
Accompanying these experimental advances, have been fundamental advances in our mechanistic view of magma ascent and eruption (Tuffen et al., 2003; Gonnermann and Manga, 2003; Lavallée et al., 2008; Castro and Dingwell, 2009), volcano seismicity (Arciniega et al., 2015; Vasseur et al., 2017) , and the fate of volcanic ash (Delmelle et al., 2018; Renggli et al., 2018). Vast experimental expertise, together with the global impact of our work to date, place me uniquely to exploit these recent advances and to bring the impact of an experimental approach to volcanology to its fullest potential, with Europe at its forefront.

Régimen de financiación

ERC-ADG - Advanced Grant

Institución de acogida

LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN
Aportación neta de la UEn
€ 3 439 510,00
Dirección
GESCHWISTER SCHOLL PLATZ 1
80539 MUNCHEN
Alemania

Ver en el mapa

Región
Bayern Oberbayern München, Kreisfreie Stadt
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 3 439 510,41

Beneficiarios (1)