Description du projet
Résoudre l’infaisabilité et l’inapproximabilité des calculs
Les mathématiques de calcul visent à catégoriser les problèmes algorithmiques selon le temps et la mémoire (espace) nécessaires pour les calculer. Les informaticiens ont formulé différentes manières de déterminer si un problème algorithmique peut être résolu. Dans la négative, les scientifiques pourraient proposer un algorithme d’approximation pour trouver des solutions presque optimales. Cette conjecture des jeux uniques a été proposée il y a 20 ans afin de faciliter les démonstrations d’infaisabilité pour les problèmes d’approximation dont la complexité n’est toujours pas établie. Le projet PCPABF, financé par l’UE, s’appuie sur son récent article, reconnu comme l’étape intermédiaire dans la résolution de la conjecture des jeux uniques, pour aller jusqu’au bout de la démonstration. Des applications de ces techniques se sont avérées pertinentes pour la propagation des pandémies, en particulier la crise de la COVID-19.
Objectif
Computer Science, in particular, Analysis of Algorithms and Computational-Complexity theory, classify algorithmic-problems into feasible ones and those that cannot be efficiently-solved. Many fundamental problems were shown NP-hard, therefore, unless P=NP, they are infeasible.
Consequently, research efforts shifted towards approximation algorithms, which find close-to-optimal solutions for NP-hard optimization problems.
The PCP Theorem and its application to infeasibility of approximation establish that, unless P=NP, there are no efficient approximation algorithms for numerous classical problems; research that won the authors --the PI included-- the 2001 Godel prize.
To show infeasibility of approximation of some fundamental problems, however, a stronger PCP was postulated in 2002, namely, Khot's Unique-Games Conjecture.
It has transformed our understanding of optimization problems, provoked new tools in order to refute it and motivating new sophisticated techniques aimed at proving it.
Recently Khot, Minzer (a student of the PI) and the PI proved a related conjecture: the 2-to-2-Games conjecture (our paper just won Best Paper award at FOCS'18). In light of that progress, recognized by the community as half the distance towards the Unique-Games conjecture, resolving the Unique-Games conjecture seems much more likely.
A field that plays a crucial role in this progress is Analysis of Boolean-functions.
For the recent breakthrough we had to dive deep into expansion properties of the Grassmann-graph.
The insight was subsequently applied to achieve much awaited progress on fundamental properties of the Johnson-graph.
With the emergence of cloud-computing, cryptocurrency, public-ledger and Blockchain technologies, the PCP methodology has found new and exciting applications.
This framework governs SNARKs, which is a new, emerging technology, and the ZCASH technology on top of Blockchain.
This is a thriving research area, but also an extremely vibrant High-Tech sector.
Mots‑clés
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).
Programme(s)
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
PROGRAMME PRINCIPAL
Voir tous les projets financés dans le cadre de ce programme
Thème(s)
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.
Régime de financement
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.
ERC-ADG - Advanced Grant
Voir tous les projets financés dans le cadre de ce programme de financement
Appel à propositions
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.
(s’ouvre dans une nouvelle fenêtre) ERC-2018-ADG
Voir tous les projets financés au titre de cet appelInstitution d’accueil
La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.
69978 Tel Aviv
Israël
Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.