Projektbeschreibung
Neuartige Untersuchungen zur Darstellungstheorie von Algebren und homologischer Algebra
Bei der Untersuchung komplexer Themen oder Prozesse, die sich nur schwer messen und analysieren lassen, wird häufig ein Proxy verwendet, also eine indirekte Beobachtung oder Extrapolation, die das relevante Signal repräsentiert. Auf dem Gebiet der Mathematik gewinnt die Repräsentationstheorie durch ihre Wirkung auf einfachere Strukturen auch Erkenntnisse über komplexe algebraische Strukturen. Mit Unterstützung des Marie-Skłodowska-Curie-Maßnahmenprogramms entwickelt das Projekt COMBGEOREP homologische und geometrische Methoden zur Untersuchung der Darstellungen von Algebren. Dabei stellt es Verbindungen zur Kombinatorik, zur Darstellungstheorie von Gruppen, sowie zur algebraischen und symplektischen Geometrie her.
Ziel
Representation theory is the study of complex algebraic structures such as groups and rings via their actions on simpler algebraic structures, such as vector spaces. The naturality of this idea of studying complex problems by ‘linearisation’ means that representation theory has strong interactions with many areas of mathematics. This project lies in the area of representation theory of algebras and homological algebra. The overall goal is to develop homological and geometric methods to study representations of algebras creating links with combinatorics, group representation theory, algebraic and symplectic geometry. The principal research objectives are: 1) Use the geometry of Riemann surfaces to study skewed-gentle algebras and their tau-tilting theory. 2) Develop cluster-theoretic techniques in negative Calabi-Yau (CY) triangulated categories by: a) constructing negative CY cluster categories; b) developing the theory of simple-minded systems in stable module categories. The geometry of surfaces provides equivalences between derived categories of gentle algebras and Fukaya categories in symplectic and algebraic geometry. The extension of these methods to skewed-gentle algebras should significantly broaden the scope of this interaction between algebra and geometry. The theory of negative CY categories is considerably underdeveloped despite their occurrence in important contexts such as stable module categories in group representation theory. Cluster theory provides powerful combinatorial methods for positive CY categories which initial work by Coelho Simões suggests is amenable to development in the negative CY setting. The project will be carried out by Raquel Coelho Simões under the supervision of Jan Grabowski at Lancaster University. It will serve to establish Coelho Simões as a research leader in her field through work in a highly active research area at an institution sitting in a broad network of universities with major strength in the field.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
- Naturwissenschaften Mathematik reine Mathematik Geometrie
- Naturwissenschaften Mathematik reine Mathematik Algebra algebraische Geometrie
- Naturwissenschaften Mathematik reine Mathematik diskrete Mathematik
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Wir bitten um Entschuldigung ... während der Ausführung ist ein unerwarteter Fehler aufgetreten.
Sie müssen sich authentifizieren. Ihre Sitzung ist möglicherweise abgelaufen.
Vielen Dank für Ihr Feedback. Sie erhalten in Kürze eine E-Mail zur Übermittlungsbestätigung. Wenn Sie sich für eine Benachrichtigung über den Berichtsstatus entschieden haben, werden Sie auch im Falle einer Änderung des Berichtsstatus benachrichtigt.
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
MSCA-IF-EF-ST - Standard EF
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) H2020-MSCA-IF-2018
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenKoordinator
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
LA1 4YW LANCASTER
Vereinigtes Königreich
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.