Project description
Molecular mechanisms of human centromere stability maintenance
Cell division depends on centromeres, which connect chromosomes to the spindle for separating sister chromatids in mitosis. Human centromeres consist of large arrays of repetitive DNA and are often sites of rearrangements in cancer. The molecular mechanisms that maintain repetitive DNA stability are poorly understood. The EU-funded Centromere Stability project will identify the human centromere maintenance network and investigate the mechanisms of repeats stability. The project will also study the consequences of centromere dysfunction, including changes in the size of the array, cell ploidy and proliferation dynamics. The proposed research will create a conceptual framework to explain the fragility of repetitive centromere DNA and the consequences for cell physiology and disease.
Objective
Cell division relies on centromeres, which connect chromosomes to the spindle for separating sister chromatids in mitosis. Human centromeres are composed of large arrays of repetitive DNA, which are often sites of aberrant rearrangements in cancer. While centromere defects can cause chromosomal instability, the molecular mechanisms that maintain their repetitive DNA stable are poorly understood. During the fellowship, I aim to investigate how human centromere stability is maintained and the consequences of centromere dysfunction in driving cancer and aging. To circumvent impeding technical barriers due to incomplete centromere sequence annotation, I have ideated the use of Chromosome Orientation Fluorescence In Situ Hybridization at human centromeres (Cen-CO-FISH; Giunta, 2018). Using this innovative technique, I revealed that CENP-A and CCAN (constitutive centromere-associated network) proteins prevent centromere instability, and this functionality is compromised in cancer cell lines and in primary cells undergoing senescence (Giunta & Funabiki, 2017); my data show that CENP-A may play a new role during centromere replication, preventing DNA damage, repeats shortening, and subsequent aneuploidy. I will use the Auxin-Inducible Degron (AID) system and CRISPR-Cas genome editing with high-throughput imaging of Cen-CO-FISH to identify the human centromere maintenance network and investigate the mechanisms of repeats stability. I will also examine the consequences of centromeres dysfunction, including changes in the size of the array, cell ploidy and proliferation dynamics, using a variety of validated and novel methods, including Cen-qRT-PCR, qFISH and cytogenetic assays. Altogether, the proposed research will unveil a novel conceptual framework to explain the fragility of repetitive centromere DNA and its consequences on cell physiology and disease. This work will lay the foundation for my future independent research on centromere instability in age-associated cancers.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- medical and health sciences medical biotechnology genetic engineering gene therapy
- natural sciences biological sciences genetics DNA
- medical and health sciences clinical medicine oncology
- medical and health sciences basic medicine physiology
- natural sciences biological sciences genetics chromosomes
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2018
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
00185 Roma
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.