Project description
For perfect computation in distributed systems
Computer science and biology are increasingly convergent. In this context, distributed computing (DC) appears to provide the best approach to modelling natural processes, a method inspired by the high-level design principles of biological systems. However, a new framework is urgently needed to study complex self-organising processes in nature, as presently, DC models that consider all aspects simultaneously are lacking. The EU-funded CoCoNat project will bridge the gap through the theory of distributed synchronisation and coordination tasks in restricted models of DC using the distributed computing lens to model natural phenomena. It will also benefit several areas of engineering and computing through solving various synchronisation and coordination tasks like in cases of firefly populations or embryonic development.
Objective
In recent years, an algorithmic theory of natural and biological systems has been increasingly advocated as providing a much needed framework for investigating complex self-organising processes in nature. This project contributes to this research program by employing the distributed computing lens to model natural phenomena. Biological systems exhibit many properties also studied in distributed computing: they comprise several independently acting entities, tend to operate in noisy and dynamic environments, thus requiring them to be highly-resilient and adaptive, solve intricate coordination tasks, and display sophisticated communication techniques.
This project aims to develop the theory of distributed synchronisation and coordination tasks in restricted models of distributed computing. These tasks are some of the most fundamental problems in distributed computing, as they are essential in computer networks as well as numerous other areas of engineering and computing. In addition, they are ubiquitous in natural and biological systems, ranging from molecular to population-level systems, which are known to solve various synchronisation and coordination tasks: examples include symmetry-breaking during the development of the nervous system, consensus decision making in species communities, and synchronisation in firefly populations and embryonic development.
Unlike computer networks, biological distributed systems have unique features: (1) the agents typically have limited computational abilities, (2) communication is unreliable and restricted, (3) the system has a dynamic spatial structure, and (4) the environment may be noisy. Currently, distributed computing models that consider all aspects simultaneously are lacking. The proposed research approaches this goal from multiple angles by developing new models and analysis methods for determining the limitations of synchronisation and related tasks in both strong and weak models of computing.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences neurobiology
- natural sciences biological sciences developmental biology
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering telecommunications telecommunications networks
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF-EF-ST - Standard EF
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2018
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
3400 KLOSTERNEUBURG
Austria
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.