Projektbeschreibung
Mit In-vitro-Modell der Blut-Hirn-Schranke schneller Wirkstoffe entdecken
Die pharmazeutische Industrie und Patientinnen und Patienten, die verzweifelt nach neuen Arzneimitteln zur Behandlung ihrer Krankheiten suchen, können massiv von Verbesserungen im Prozess der Wirkstoffentwicklung profitieren. Es besteht ein wachsender Bedarf an sichereren und biologisch relevanteren Modellen für das Wirkstoffscreening. Wirkstoffe, Arzneimittel und Behandlungen gegen Krankheiten wie Alzheimer nicht richtig testen zu können, ist ein großes Problem. Aber das EU-finanzierte Projekt NOVACHIP arbeitet an einer Lösung. Es entwickelt ein skalierbares dreidimensionales In-vitro-Modell der Blut-Hirn-Schranke (BBB-on-a-Chip), um einen höheren Grad der biologischen Relevanz als bei den aktuellen In-vitro-Modelle zu erreichen. Für die pharmazeutische Industrie, die an der Entwicklung von Therapien für eine Vielzahl neurologischer Erkrankungen arbeitet, wäre ein derartiges System ein großer Durchbruch.
Ziel
There is great need to develop safer and more biologically relevant models for drug screening. Recent reports indicate that up to 20% of acute kidney complications can be linked to drug-induced nephrotoxicity and more than 40 molecules found to reduce Alzheimer’s Disease (AD)-related plaques in animal models were shown to be ineffective in AD patients. It is increasingly evident that both in vitro and in vivo models being used to develop drugs have a limited capacity to predict the pathophysiology of human disease, personalized response, and off-target drug toxicity. The inability to properly test drugs and treatments to diseases such as AD constitutes a risk for pharmaceutical companies and a major obstacle to overcome. This ERC PoC proposal aims to establish a practical microfluidic fabrication process capable of recreating structural and biomechanical features of native blood vessels. Specifically, we aim to develop a scalable 3D Blood-Brain-Barrier in vitro model (BBB-on-a-chip) able to provide a higher level of biological relevance than current in vitro models. The development of such a system would represent a major break-through for the pharmaceutical industry generating therapies for a variety of neurological disorders. Thanks to the ERC Starting Grant STROFUNSCAFF, we have developed a simple fabrication process that combines bioprinting and self-assembly to grow functional fluidic devices with endothelialized vessel-like capillaries (patent application in preparation). NOVACHIP proposes to a) build scalable microfluidic devices made from capillaries that incorporate relevant cells and extracellular matrix (ECM) components, exhibit tissue-like stiffness, and can be designed with specific sizes and geometries to better resemble the native BBB and b) compare it to a commercially available in vitro model as well as c) an established rat model by quantifying permeability of specific imaging biomarkers for Magnetic Resonance Imaging (MRI) technique.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht.
- Medizin- und GesundheitswissenschaftenGrundlagenmedizinNeurologieDemenzAlzheimer
- Medizin- und GesundheitswissenschaftenGrundlagenmedizinPhysiologiePathophysiologie
- NaturwissenschaftenMathematikreine MathematikGeometrie
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Schlüsselbegriffe
Programm/Programme
Thema/Themen
Finanzierungsplan
ERC-POC - Proof of Concept GrantGastgebende Einrichtung
NG7 2RD Nottingham
Vereinigtes Königreich