Skip to main content
CORDIS - Forschungsergebnisse der EU
CORDIS

Reproducible synthesis of nanocrystals with tunable properties for sustainable energy solutions

Projektbeschreibung

Neue Forschung zur Unterstützung der Massenproduktion von Nanokristallen

Die herausragenden Eigenschaften von Nanokristallen im Vergleich zu ihren Massen-Pendants sind auf ihre geringe Größe von nur wenigen Nanometern zurückzuführen. Werden Produktionsmethoden gefunden, die Wiederholbarkeit, Reproduzierbarkeit und Skalierbarkeit gewährleisten, die jede reale Anwendung benötigt, wird dies ermöglichen, dass diese Materialien in großem Umfang in der Industrie eingesetzt werden können. Ziel des EU-finanzierten Projekts NANO-TUNE ist es, die Barrieren abzubauen, die die Massenproduktion von Nanokristallen behindern. Mithilfe von Synchrotron-Röntgenstreuungstechniken erhalten die Forschenden beispiellose Einblicke in die Keimbildungs- und Wachstumsmechanismen von Nanokristallen, insbesondere von jenen, die aus Kupfer-Chalzogenid bestehen. Die Forschungsergebnisse werden es den Forschenden ermöglichen, die Eigenschaften von Nanokristallen bei Bedarf zu optimieren und sie für industrielle Anwendungen zu skalieren.

Ziel

The future of materials chemistry is the ability to tune materials properties to meet the demands of specific applications. Nanocrystals (NC) are promising materials because their properties can be tuned with NC diameter. Further tuning can be achieved with materials like non-stoichiometric Cu2S that have tunable properties by incorporating different elements into their structure. One example is Cu2ZnSnS4 (CZTS), a photoabsorber with a tunable band-gap with changes in Cu:Zn ratio. However, in order to take advantage of tunable properties the copper chalcogenide NCs must be made reproducibly. However, the ability to reproducibly synthesize NCs has not been reached due to three challenges. The first is a lack of understanding of the NC nucleation mechanism which results in batch-to-batch variation in NC size. The second is a lack of understanding of NC growth mechanisms and how those depend on growth conditions. The third is phase segregation and cation disorder which often occurs for complex ternary and quaternary materials (like CZTS) synthesized with multiple metal precursors. Studying NC formation mechanisms using in situ X-ray total scattering from synchrotron sources allows for previously unobtainable insight on structure of NCs from precursor to nuclei to NC. In NANO-TUNE, I will study the nucleation and growth of CuS using in situ X-ray total scattering and target subsequent cation exchange with Zn and Sn to make CZTS. The outcomes of NANO-TUNE will be the ability to make NCs more reproducibly and with a great tunability of materials properties. CZTS NCs will be used as a proof of concept to study other copper chalcogenide materials in the future which have a wide range of uses including batteries and sensors. The supervisor of this work, Prof. Jensen, has extensive expertise on studying the structure of ultra-small particles and in situ beamline X-ray total scattering experiments, making the University of Copenhagen the perfect host for this project.

Koordinator

KOBENHAVNS UNIVERSITET
Netto-EU-Beitrag
€ 207 312,00
Adresse
NORREGADE 10
1165 Kobenhavn
Dänemark

Auf der Karte ansehen

Region
Danmark Hovedstaden Byen København
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten
€ 207 312,00