Descrizione del progetto
Organuli artificiali per il trattamento della steatosi epatica non alcolica
La steatosi epatica non alcolica è caratterizzata da diverse carenze enzimatiche a livello cellulare, tra cui una minore biosintesi di S-adenosil metionina. Pertanto, è stato suggerito il mantenimento dell’attività dell’enzima sintetasi S-adenosil metionina come potenziale trattamento per malattie epatiche quali la steatosi epatica non alcolica. Il progetto MetD-AO, finanziato dall’UE, sta proponendo lo sviluppo di organuli artificiali per sostituire l’attività biocatalitica assente o persa della sintetasi S-adenosil metionina negli epatociti. La composizione di questi organuli artificiali facilita la fuga lisosomiale e garantisce un’attività enzimatica di successo, superando precedenti limitazioni. I risultati dovrebbero aprire la strada a trattamenti innovativi per le malattie epatiche.
Obiettivo
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the Western world, encompassing a spectrum of liver damage. Multiple issues are involved on the cellular level in failing liver often including enzyme deficiencies such as reduced biosynthesis of S-adenosylmethionine (SAMe). Preserving SAMe homeostasis has only recently started to be considered as a potential therapeutic target in liver-related medical conditions. However, employing the required enzyme, SAMe synthetase (SAMe-synth), as a pharmaceutical, is challenging due to the general issues involved in intact (functional) protein delivery.
The aim of the MetD-AO project is to assemble organic SAMe-synth activity mimicking polymer nanoparticles as artificial organelles (AO) and their in vitro characterization of intracellular function in hepatocytes. AOs are typically nano-sized single compartment reactors, aimed to perform a specific encapsulated biocatalytic reaction within a cell to substitute for missing or lost function. The AO will be based on amphiphilic copolymers consisting of a methyl-donating unit, cholesterol methacrylate and poly(5-carboxypentyl acrylate) as membranolytic hydrophilic tail. The latter two will aim at facilitating self-assembly and lysosomal escape, respectively. To allow structurally intact AO to escape the lysosome is unique since typically, the carrier is destroyed and only the therapeutic cargo is release into the cytosol. The proposed AOs with methyl-donating ability are highly advanced because the few prior reported AOs with intracellular activity all considered reactive oxygen related aspects at best. The successful outcome of MetD-AO has the potential to open up entirely new therapeutic opportunities in NAFLD.
The complementary expertise of my host Dr. Stadler and me, a trained polymer chemist, will ensure a successful conduction of MetD-AO while it will enhance my future career prospects gaining experience in colloidal science and cell biology.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- scienze naturaliscienze biologichebiologia cellulare
- scienze naturaliscienze chimichescienze dei polimeri
- scienze mediche e della salutemedicina clinicaepatologia
- scienze mediche e della salutemedicina di basefisiologiaomeostasi
- scienze naturaliscienze biologichebiochimicabiomolecoleproteineenzimi
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Programma(i)
Argomento(i)
Invito a presentare proposte
(si apre in una nuova finestra) H2020-MSCA-IF-2018
Vedi altri progetti per questo bandoMeccanismo di finanziamento
MSCA-IF-EF-ST - Standard EFCoordinatore
8000 Aarhus C
Danimarca