Since NKCC1-ligand complex structure is still unknown, the possibility to solve this structure in the future will help to understand the modulatory mechanism, to localize the ligand/inhibitor binding site, and to design new specific inhibitors with a structure-based approach. The broad literature analysis we provided with the review article, (Portioli et al., 2021) as well as the information that came from the mutagenesis studies on NKCC1 and the functional assays using inhibitors (Borgogno, Savardi et al., 2021) will help drive further studies on key residues involved in binding of inhibitors, the characterization of new CCC mutations associated with disorders and also the development of novel inhibitors. This project will have a remarkable impact in my career. So far, it allowed to extend my scientific knowledge and broaden my research interests and international collaborations by training and working with leading experts in structural biology and membrane protein crystallography (Dr Zhou’s lab). This project will impact my future years as an independent PI in academia, with potential collaborations with biotech-pharma companies), thanks to the possibility of discovering new therapies for various brain diseases. During the first year of project I developed my interpersonal and leadership skills by facilitating group discussions, conducting meetings, and supervising and monitoring peers. I presented the work to conferences and shared my research results with non-expert audiences. I worked independently, gaining experience in initiating a new project and leading, prioritizing tasks, anticipating problems, and maintaining focus and flexibility in changing circumstances such as Covid-19 pandemic. This project will impact my career also giving me the possibility to develop contacts in new scientific communities/institutions and to integrate knowledge and expertise in a European network of funding. Socio-economic impact of this project is mainly related to the discovery of new NKCC1 blockers. They will represent a potential therapy for those neurodevelopmental disorders possibly caused by altered Cl homeostasis. Thus, this project will positively impact the quality of Europeans’ life since the number of individuals in Europe and worldwide affected by these brain disorders is increasing, and no cures are available. Potential attraction from pharmaceutical industries will possibly generate new opportunities for spin-offs, improving Europe’s competitiveness. The results obtained from different structural biology techniques, as well as the optimization of parameters could be exploited for the resolution of the structure of NKCC1-inhibitor complex.