Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Turan-type problems for graphs and hypergraphs

Description du projet

Les problèmes de type Turán à l’étude

Une question fondamentale de la théorie des graphes est la détermination du nombre d’arêtes d’un graphe s’il ne contient pas une configuration spécifiée comme sous-graphe. Le théorème de Mantel de 1908 donne le nombre maximum d’arêtes qu’un graphe peut avoir pour un nombre donné de sommets s’il ne contient pas de triangle. Les problèmes extrêmes de ce type sont connus sous le nom de problèmes de type Turán. Financé par le programme Actions Marie Skłodowska-Curie, le projet TurantypeProblems étudiera plusieurs problèmes de type Turán concernant les graphes et les hypergraphes, ainsi que des problèmes extrémaux connexes sur les structures arc-en-ciel.

Objectif

In this project, we propose to study several Turan-type extremal problems for graphs and hypergraphs as well as related extremal problems on rainbow structures. In Turan-type extremal problems, roughly speaking, we want to determine how dense a configuration (graph, hypergraph, set system, etc.) can be when certain sub-configurations are forbidden. One of the earliest results in the area is Mantel's Theorem from 1908, which says that the largest triangle-free graph on given number of vertices is the balanced complete bipartite graph. This was generalized by Turan in 1941 to complete graphs on any number of vertices. The Turan-number of a graph G is the largest number of edges that a graph on given number of vertices can have without containing G.

The experienced researcher in recent years has made several contributions to these problems. On Turan-type problems for bipartite graphs, in joint work with Jiang and Ma, the she made a first non-trivial progress in a while to a conjecture of Erdos and Simonovits regarding the so-called Turan exponents of single bipartite graphs. On hypergraph Turan-type problems, in joint work with Sergey Norin, she has developed a highly effective variant of the classical stability method that allowed them to solve several open conjectures in the field. The TC-supervisor, Dhruv Mubayi, is a world leading expert on Turan-type extremal problems. Working on problems posed in this proposal will allow the experienced researcher to further develop these promising tools with a leading expert.

The second set of problems concern rainbow structures in edge-coloured graphs and hypergraphs. The experienced researcher, in joint works with Peter Keevash, and also with others had made several contributions to this area in the last two years. Here there is also a common theme of a series of work done by the MC-supervisor Julia Boettcher, who is a leading expert on the study of spanning structures in graphs and hypergraphs.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

MSCA-IF-GF - Global Fellowships

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) H2020-MSCA-IF-2018

Voir tous les projets financés au titre de cet appel

Coordinateur

LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCE
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 189 099,84
Adresse
Houghton Street 1
WC2A 2AE London
Royaume-Uni

Voir sur la carte

Région
London Inner London — West Westminster
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 189 099,84

Partenaires (1)

Mon livret 0 0