European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Design and engineering of porous nitride-based materials as a platform for CO2 photoreduction

Descripción del proyecto

Fotocatálisis para reducir el CO2

La Hoja de Ruta de la Energía en Europa para 2050 se propone garantizar la seguridad y la sostenibilidad de las economías descarbonizadas del futuro. Es necesario dar con vías eficaces que desemboquen en una producción de energía solar. El uso de CO2 para limitar la carbonización requiere de investigaciones precisas sobre fotorreducción de CO2, un proceso poco estudiado hasta la fecha. Esta situación deriva de que, si bien la fotocatálisis es una vía posible, aún resulta complejo crear un fotocatalizador fiable y eficaz. El proyecto financiado con fondos europeos THEIA propone un nuevo tipo de fotocatalizadores generado por la combinación de catálisis, ciencia de los materiales e ingeniería. La propuesta estudia las propiedades del nitruro de boro (BN) poroso para imprimirle propiedades fundamentales para la reducción de CO2 mediante fotocatálisis.

Objetivo

CONTEXT: Reshaping our energy portfolio considering the sustainability of global energy resources is central to the European Energy Roadmap 2050. Hence, researchers need to identify efficient routes towards solar fuels production. Unlike H2 evolution, CO2 photoreduction has been poorly studied. Given the scope for CO2 utilisation in a carbon-constrained future, there is an exciting opportunity to devote targeted research towards CO2 photoreduction. Photocatalysis is one route towards CO2 reduction. Yet, the design of a cost-effective, sustainable, efficient and robust photocatalyst remains a highly challenging task.
PROPOSAL: I propose to merge catalysis, materials science and engineering to develop a radically new class of photocatalysts, i.e. porous boron nitride (BN)-based materials for CO2 reduction. My approach is opposite to current research trends which explore non-crystalline and non-porous materials, and aims to compete with the 40-year old benchmark in the field, TiO2. Porous BN combines key attributes for CO2 photoreduction: (i) chemical, structural and optoelectronic tunability, (ii) high porosity, (iii) semi-crystalline to amorphous nature. These features provide unique pathways towards effective sorption of reactants/products, facile band gap engineering, and enhanced surface charge transfer. Their semi-crystalline to amorphous nature may facilitate scale-up.
IMPACT: I will address three major challenges:
1. Creating a porous BN-based material platform with adsorptive and photocatalytic functionalities
2. Adding a new dimension to photocatalyst design via porosity control
3. Creating approaches to molecular- and micro-structure engineering in porous BN
Realization of these advances would lead towards a ‘dream photocatalyst’ with integrated adsorptive, optoelectronic and catalytic functionalities. The impact will benefit fields for which interfacial phenomena are key: molecular separation, catalysis and drug delivery.

Régimen de financiación

ERC-STG - Starting Grant

Institución de acogida

IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE
Aportación neta de la UEn
€ 1 498 934,00
Dirección
SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
SW7 2AZ LONDON
Reino Unido

Ver en el mapa

Región
London Inner London — West Westminster
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 1 498 934,00

Beneficiarios (1)