Project description
Circular chemicals production via CO2 and renewable electricity
Electrochemical reduction of CO2 is a process that can convert waste CO2 into chemicals for the chemical industry or into fuels. It is generating growing interest as a way to simultaneously address climate change and energy security. However, significant technological improvements are required to enable the realisation of practical and cost-effective CO2 electrolysis systems. The EU-funded SELECTCO2 project is on a mission to do just that, relying on modelling from the quantum level up to the complete device to gain critical insight into the role of microscopic changes in macroscopic outputs. The team is developing novel catalysts, gas diffusion layers and membranes targeting CO, ethanol and ethylene production. Enhanced selectivity, efficiency and durability should create important market opportunities.
Objective
This proposal will develop enhanced electrolysis devices enabling CO2 to be converted into high value chemicals. Specifically this project will improve selectivity, efficiency and durability of electrochemical CO2 conversion into either carbon monoxide, ethanol or ethylene. The immediate focus will be on the highly economically attractive chemicals industry, with the long term goal of using this as a stepping stone towards the fuels industry.
New catalysts, gas diffusion layers, and membranes will all be developed to improve performance in commercially scalable type devices. Single site catalyst will be used to create high selectivity towards carbon monoxide production, whereas a dual catalyst approach will be used to produce ethanol. Variations in morphology and surface structuring will be the key to eliminating side reaction in ethylene production
The greatest novelty of this project will be to use modifications in the reaction environment to effect reaction selectivity. The hydrophobicity and pore size will be varied in the gas diffusion layer and anion exchange membranes and ionomers will be developed to improve performance. The entire device will be comprehensively modeled from the quantum regime all the way to the complete device to relate macroscopic changes with catalytic improvements. Developments in both improved catalysts as well as optimization of reaction environment will allow for high CO2 conversion selectivity, (CO 90%, ethanol 80%, ethylene 90%) at high energy efficiencies (> 40%) and at high rates (> 200 mA/cm2).
A life cycle analysis will focus on electrical power and CO2 inputs as well as the specific products to discover the most effective market opportunities for this technology moving forward. In addition social acceptance issues will be investigated to ensure this technology is developed in a manner that optimizes this aspect as well.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences inorganic chemistry inorganic compounds
- natural sciences chemical sciences organic chemistry alcohols
- natural sciences chemical sciences catalysis
- natural sciences chemical sciences organic chemistry aliphatic compounds
- engineering and technology environmental engineering energy and fuels
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.3.3. - SOCIETAL CHALLENGES - Secure, clean and efficient energy
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.3.3.2. - Low-cost, low-carbon energy supply
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-LC-SC3-2018-2019-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
2800 Kongens Lyngby
Denmark
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.