Project description
Role of myeloid cells in non-alcoholic fatty liver disease
Non-alcoholic fatty liver disease is a broad term for liver conditions not associated with alcohol consumption, and is common around the world. Its initial stage might progress to non-alcoholic hepatitis, cirrhosis or hepatocellular carcinoma, leading in severe cases to liver transplantation. Hepatic myeloid cells including mononuclear phagocytes might play a critical role in activating the immune system and leading to inflammation. The EU-funded project will study the heterogeneity of hepatic mononuclear phagocytes to elucidate roles of their subtypes in the development and progression of non-alcoholic fatty liver disease. Single cell technologies and several modern in vivo tools will be used to understand the significance of the phenotypic and functional heterogeneity of myeloid cells in mice and men.
Objective
Non-alcoholic fatty liver disease (NAFLD) results from accumulation of excessive fat in the liver. It encompasses simple steatosis (fatty liver) progressing through non-alcoholic steatohepatitis (NASH), cirrhosis and hepatocellular carcinoma. It is the most common cause of chronic liver disease in western countries and is predicted to be the main cause of liver transplantation by 2030. As such NAFLD represents a significant clinical burden for which to date, there is no effective treatment. Multiple hits are thought to contribute to the progression from steatosis to NASH. One of these hits is activation of the immune system and the ensuing inflammatory response. Hepatic myeloid cells, including mononuclear phagocytes (MNPs) are thought to play an essential role in this, sensing excess lipids and other danger signals and initiating immune responses. However, MNPs represent a highly heterogeneous population, including multiple subtypes of dendritic cells and macrophages. To date these have been studied as a group rather than as individual cell types, leading to them being ascribed multiple and often contradictory roles depending on the experimental set up. Thus their specific contributions to NAFLD still remain unclear. I hypothesize that by dissecting the phenotypic and functional heterogeneity of hepatic MNPs, we will be able to unravel their roles in NAFLD and in the progression to NASH. Single cell technologies such as single cell RNA sequencing have revolutionised our ability to understand cellular heterogeneity. In addition, they have facilitated the development of novel genetic tools to study functions of specific cell types in vivo. I aim to use this technology and more specific in vivo tools to understand MNP phenotypic and functional heterogeneity in NAFLD in mice and men. This is essential for the development of novel therapeutic strategies targeting myeloid cells in what is becoming one of the biggest health challenges in the western world.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences biochemistry biomolecules lipids
- medical and health sciences clinical medicine hepatology
- natural sciences biological sciences genetics RNA
- medical and health sciences clinical medicine transplantation
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
9052 ZWIJNAARDE - GENT
Belgium
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.