Project description
Making robots explain their actions
In the EU-funded DEXIM project, the goal is to build a fully transparent end-to-end trainable and explainable deep learning approach for visual scene understanding. To achieve this goal, we will make use of the positive interactions between multiple data modalities, incorporate uncertainty and temporal continuity constraints, as well as memory mechanisms. The output of this proposal will have direct consequences for many practical applications, most notably in mobile robotics and intelligent vehicles industry. This project will therefore strengthen the user’s trust in a very competitive market.
Objective
Explanations are valuable because they scaffold the kind of learning that supports adaptive behaviour, e.g. explanations enable users to adapt themselves to the situations that are about to arise. Explanations allow us to attain a stable environment and have the possibility to control it, e.g. explanations put us in a better position to control the future. Explanations in the medical domain can help patients identify and monitor the abnormal behaviour of their ailment. In the domain of self-driving vehicles they can warn the user of some critical state and collaborate with her to prevent a wrong decision. In the domain of satellite imagery, an explanatory monitoring system justifying the evidence of a future hurricane can save millions of lives. Hence, a learning machine that a user can trust and easily operate need to be fashioned with the ability of explanation. Moreover, according to GDPR, an automatic decision maker is required to be transparent by law.
As decision makers, humans can justify their decisions with natural language and point to the evidence in the visual world which led to their decisions. In contrast, artificially intelligent systems are frequently seen as opaque and are unable to explain their decisions. This is particularly concerning as ultimately such systems fail in building trust with human users.
In this proposal, the goal is to build a fully transparent end-to-end trainable and explainable deep learning approach for visual scene understanding. To achieve this goal, we will make use of the positive interactions between multiple data modalities, incorporate uncertainty and temporal continuity constraints, as well as memory mechanisms. The output of this proposal will have direct consequences for many practical applications, most notably in mobile robotics and intelligent vehicles industry. This project will therefore strengthen the user’s trust in a very competitive market.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
85764 Neuherberg
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.