Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Deeply Explainable Intelligent Machines

Description du projet

Permettre aux robots d’expliquer leurs actions

Le projet DEXIM, financé par l’UE, vise à mettre en place une approche d’apprentissage profond, entièrement transparente et explicable, pouvant être entraînée de bout en bout pour être capable de comprendre des scènes visuelles. Pour atteindre cet objectif, nous utiliserons les interactions positives entre les multiples modalités de données, nous intégrerons les contraintes d’incertitude et de continuité temporelle, ainsi que les mécanismes de mémoire. Les résultats de cette proposition auront des conséquences directes sur de nombreuses applications pratiques, notamment dans le domaine de la robotique mobile et de l’industrie des véhicules intelligents. Ce projet renforcera donc la confiance de l’utilisateur envers un marché très compétitif.

Objectif

Explanations are valuable because they scaffold the kind of learning that supports adaptive behaviour, e.g. explanations enable users to adapt themselves to the situations that are about to arise. Explanations allow us to attain a stable environment and have the possibility to control it, e.g. explanations put us in a better position to control the future. Explanations in the medical domain can help patients identify and monitor the abnormal behaviour of their ailment. In the domain of self-driving vehicles they can warn the user of some critical state and collaborate with her to prevent a wrong decision. In the domain of satellite imagery, an explanatory monitoring system justifying the evidence of a future hurricane can save millions of lives. Hence, a learning machine that a user can trust and easily operate need to be fashioned with the ability of explanation. Moreover, according to GDPR, an automatic decision maker is required to be transparent by law.

As decision makers, humans can justify their decisions with natural language and point to the evidence in the visual world which led to their decisions. In contrast, artificially intelligent systems are frequently seen as opaque and are unable to explain their decisions. This is particularly concerning as ultimately such systems fail in building trust with human users.

In this proposal, the goal is to build a fully transparent end-to-end trainable and explainable deep learning approach for visual scene understanding. To achieve this goal, we will make use of the positive interactions between multiple data modalities, incorporate uncertainty and temporal continuity constraints, as well as memory mechanisms. The output of this proposal will have direct consequences for many practical applications, most notably in mobile robotics and intelligent vehicles industry. This project will therefore strengthen the user’s trust in a very competitive market.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

ERC-STG - Starting Grant

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) ERC-2019-STG

Voir tous les projets financés au titre de cet appel

Institution d’accueil

HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES FORSCHUNGSZENTRUM FUER GESUNDHEIT UND UMWELT GMBH
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 1 108 750,00
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 1 108 750,00

Bénéficiaires (2)

Mon livret 0 0