Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Deeply Explainable Intelligent Machines

Descripción del proyecto

Robots que explican lo que hacen

En el proyecto DEXIM, financiado con fondos europeos, el objetivo es diseñar un método de aprendizaje profundo integral, totalmente transparente, explicable y que pueda recibir formación para entender las escenas visuales. Para conseguir este objetivo, utilizaremos las interacciones positivas entre múltiples modalidades de datos e incorporaremos la incertidumbre y las limitaciones temporales de continuidad, así como los mecanismos de memoria. El resultado de esta propuesta tendrá consecuencias directas en muchas aplicaciones prácticas, especialmente en la industria de los vehículos inteligentes y la robótica móvil. Por lo tanto, este proyecto fortalecerá la confianza de los usuarios en un mercado muy competitivo.

Objetivo

Explanations are valuable because they scaffold the kind of learning that supports adaptive behaviour, e.g. explanations enable users to adapt themselves to the situations that are about to arise. Explanations allow us to attain a stable environment and have the possibility to control it, e.g. explanations put us in a better position to control the future. Explanations in the medical domain can help patients identify and monitor the abnormal behaviour of their ailment. In the domain of self-driving vehicles they can warn the user of some critical state and collaborate with her to prevent a wrong decision. In the domain of satellite imagery, an explanatory monitoring system justifying the evidence of a future hurricane can save millions of lives. Hence, a learning machine that a user can trust and easily operate need to be fashioned with the ability of explanation. Moreover, according to GDPR, an automatic decision maker is required to be transparent by law.

As decision makers, humans can justify their decisions with natural language and point to the evidence in the visual world which led to their decisions. In contrast, artificially intelligent systems are frequently seen as opaque and are unable to explain their decisions. This is particularly concerning as ultimately such systems fail in building trust with human users.

In this proposal, the goal is to build a fully transparent end-to-end trainable and explainable deep learning approach for visual scene understanding. To achieve this goal, we will make use of the positive interactions between multiple data modalities, incorporate uncertainty and temporal continuity constraints, as well as memory mechanisms. The output of this proposal will have direct consequences for many practical applications, most notably in mobile robotics and intelligent vehicles industry. This project will therefore strengthen the user’s trust in a very competitive market.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Palabras clave

Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

ERC-STG - Starting Grant

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) ERC-2019-STG

Ver todos los proyectos financiados en el marco de esta convocatoria

Institución de acogida

HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES FORSCHUNGSZENTRUM FUER GESUNDHEIT UND UMWELT GMBH
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 1 108 750,00
Dirección
INGOLSTADTER LANDSTRASSE 1
85764 Neuherberg
Alemania

Ver en el mapa

Región
Bayern Oberbayern München, Landkreis
Tipo de actividad
Research Organisations
Enlaces
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 1 108 750,00

Beneficiarios (2)

Mi folleto 0 0