Project description
Development of human placenta
Pregnancy depends on the early stages of development when placental extravillous trophoblast cells (EVTs) infiltrate the uterine mucosa, the decidua. EVTs invade the decidua to transform the uterine spiral arteries into dilated vessels. Understanding the molecular and cellular mechanisms of maternal-foetal interactions has been challenging due to the lack of reliable in vitro models. The focus of the EU-funded HumanPlacenta project is on how the human placenta develops and in what way it depends on the maternal uterine microenvironment. Researchers will employ recently derived 3D culture organoids from human decidua and placenta. Using these organoids for single-cell genomics, CRISPR/Cas9 editing and tissue engineering studies will elucidate the mechanisms that specify the EVT lineage, the role of paracrine signalling in regulating placental development, and cell-cell interactions between decidua and EVTs.
Objective
How does the human placenta develop and how is this influenced by the maternal uterine microenvironment? These are the central questions addressed in my proposal. Normal growth and development of the fetus depends on the placenta, the extra-embryonic organ derived from trophectoderm. Successful pregnancy depends on the earliest stages of development when placental extravillous trophoblast cells (EVT) infiltrate the uterine mucosa, the decidua. EVT invade the decidua to transform the uterine spiral arteries into a dilated vessel capable of high conductance. Deficient arterial remodelling by EVT results in miscarriage, pre-eclampsia, fetal growth restriction and stillbirth. However, excessive invasion into the uterine wall is also potentially dangerous. Thus, to achieve a successful pregnancy, a territorial boundary is drawn with a balance between fetal EVT invasion and maternal decidual cells. Understanding the molecular and cellular mechanisms underlying these maternal/fetal interactions has been challenging due both to practical and ethical limitations and lack of reliable in vitro models. I have recently derived 3D culture systems (organoids) from human decidua and placenta that will provide the essential tools. I will use these organoids combined with single cell genomics, Crispr/Cas9 genome editing and tissue engineering to study: (i) the molecular mechanisms that specify the EVT lineage (ii) the role of paracrine signalling from maternal decidual glands in regulating placental development (iii) cell-cell interactions between decidua and EVT by creating an artificial model of decidua made from tailored collagen scaffolds seeded with stromal, glandular and immune cells. My proposal capitalises on the remarkable ability of organoid cultures to faithfully model human physiology. The human uterine environment in early pregnancy is crucial for reproductive success and development of an in vitro model of placentation will have a wide-ranging impact.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences genetics
- medical and health sciences clinical medicine obstetrics
- medical and health sciences basic medicine physiology
- medical and health sciences clinical medicine embryology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
4056 BASEL
Switzerland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.