Descripción del proyecto
Métodos nuevos para mejorar la seguridad de datos sensibles
La ciencia de datos, el aprendizaje automático y la inteligencia artificial son campos en rápido desarrollo. Con todo, lo datos a emplear y analizar en estos campos suelen ser sensibles y protegerlos constituye un reto complejo. El objetivo del proyecto KIProtect, financiado con fondos europeos, es abordar este reto con un método totalmente nuevo e innovador destinado a la protección y seguridad de los datos que se adapta específicamente a los datos masivos y la inteligencia artificial. El proyecto proporcionará un método novedoso de seudonimización de datos basado en técnicas criptográficas y estadísticas de transformación de datos, lo que permitirá a los clientes trabajar fácilmente con datos sensibles y compartirlos, al tiempo que se garantiza el cumplimiento normativo y la seguridad.
Objetivo
The importance of data science, machine learning and artificial intelligence is increasing rapidly. Concepts like smart home, smart cities, connected car, Internet of Things (IoT) and industry 4.0 all require large amounts of data that need to be collected, stored and analyzed. To remain relevant and competitive, companies and public organizations alike need to follow this trend. However, the data they want to use and analyze is often sensitive, and protecting it is a difficult challenge.
KIProtect solves this challenge with an entirely new, innovative approach for data security and data protection that is specifically tailored to big data and artificial intelligence: We provide a novel data pseudonymization approach based on modern cryptographic and statistical data transformation methods. This allows our customers to easily work with and share sensitive data while ensuring compliance and security, enabling them to build data-driven business processes on top of secure data streams. Our technology is currently being tested in several proof of concept (PoC) projects and demonstrably works. It is unique in that it can reliably protect high-dimensional data (e.g. images or time series) while retaining most of the data utility. We therefore have a strong USP and are currently pursuing patent protection for our core algorithm as well, which will grant us a very strong position in the large and fast-growing data security market. We plan to use the H2020 funding to prove the applicability of our approach for specific industries and to develop PoC solutions that enable companies to build secure and robust data processing systems for specific use cases. We have realized a first prototype implementation of our methods as an API and are already working with our first pilot customers to validate our business plan. The European data security market has a volume of more than 1 BN € and grows at 15 % per year. We are confident that we can become a technology leader in it.
Ámbito científico
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
- engineering and technologycivil engineeringurban engineeringsmart cities
- natural sciencescomputer and information sciencescomputer securitydata protection
- social sciencespolitical sciencespolitical policiescivil society
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringcontrol systemshome automation
- natural sciencescomputer and information sciencesdata sciencedata processing
Programa(s)
Convocatoria de propuestas
Consulte otros proyectos de esta convocatoriaConvocatoria de subcontratación
H2020-SMEInst-2018-2020-1
Régimen de financiación
SME-1 - SME instrument phase 1Coordinador
10707 BERLIN
Alemania
Organización definida por ella misma como pequeña y mediana empresa (pyme) en el momento de la firma del acuerdo de subvención.