Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Defect Simulation and Material Growth of III-V Nanostructures- European Industrial Doctorate Program

Project description

Training researchers in III-V semiconductors

CMOS is the dominant commercial process technology for the fabrication of integrated circuits. Developed in 1960, CMOS processes originally employed metal as the gate conductor. Today, the gates are made from polysilicon. There is also a shift towards hybridisation of function in terms of bringing in sensors, power, memory and photonics functionality on the same chip. Specifically, there is growing interest in the integration of III-V materials and other complex semiconductors that have advantages over silicon. The EU-funded DESIGN-EID project will address the technological challenge by investigating the impact of defects on electronic and photonic device performance. It will train three early stage researchers to bridge the gap between predictive simulations, experimental materials and device development.

Objective

In semiconductor technology and applications today, we are increasingly observing a shift from the pure silicon CMOS technology towards hybridisation of function in terms of bringing in sensors, power, memory and photonics functionality on the same chip. In particular, there is a great interest in the heterogeneous and monolithic integration of III-V materials and other complex semiconductors, such as III-Nitrides and SiC on Si substrate. However, the direct growth of III-V materials on silicon inevitably will lead to crystal defects that significantly decreases performance of novel devices.

To overcome this main technological challenge and to make this new technology financially viable, the most cost-effective and time-effective approach is to combine experimental and simulation work, which indeed is the main aim on this project – DESING-EID. This will be achieved by addressing the following objectives.

The first objective of DESIGN-EID is to train three young ESRs who will bridge the gap between predictive simulations, experimental materials and device development by developing simulation tools for prediction of crystal growth as a function of process conditions. Secondly, completely eliminating defects in compound semiconductors is likely not achievable, therefore a simulation framework providing an accurate evaluation of their impact on device performance will be essential for designing devices and materials minimizing their impact. Furthermore, semiconductor defects in semiconductors may be exploited for their unique electronic properties if their presence and properties are controlled. For example, vacancies might be used to implement Qu-bits, whereas extended defects, such as dislocations, can provide unique transport properties. Hence, the last objective of the DESIGN-EID project focuses on experimental control and accurate simulation of the impact of defects on electronic and photonic device performance.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-ITN - Marie Skłodowska-Curie Innovative Training Networks (ITN)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-ITN-2019

See all projects funded under this call

Coordinator

UNIVERSITY OF GLASGOW
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 336 858,40
Address
UNIVERSITY AVENUE
G12 8QQ Glasgow
United Kingdom

See on map

Region
Scotland West Central Scotland Glasgow City
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 336 858,40

Participants (2)

My booklet 0 0