Descripción del proyecto
Más energía gracias a una mejor ubicación de las turbinas eólicas
Cada vez es más necesario disponer de fuentes de energía respetuosas con el medio ambiente, y la búsqueda de nuevas maneras de producir energía con costes reducidos sigue aumentando, tanto por parte de entidades como de estados. Esto convierte a la energía eólica en una opción muy popular, pero su rendimiento depende de la ubicación y el posicionamiento. El proyecto zEPHYR, financiado con fondos europeos, se propone crear una plataforma que permitirá analizar con mayor eficacia el lugar óptimo de instalación de las turbinas eólicas a fin de maximizar la producción de energía. Con ese fin, los investigadores emplearán modelos atmosféricos avanzados en la microescala y mesoescala, así como datos sobre el impacto de modelos atmosféricos locales y de terreno real en la búsqueda de la ubicación ideal de las turbinas.
Objetivo
The rise of a low-carbon society, compatible with economic growth and environmental sustainability, is pending on a number of technological evolutions and breakthroughs. In that line, the role played by wind energy is deemed to increase further in the next decades. The development of performant wind farms is pending upon the performance of each turbine composing the wind farm, and on the optimal harvesting of the local wind resources. A wind park performance is nowadays predicted assuming standard profiles of mean incoming velocity, turbulence intensities and scales, etc. corresponding to standard terrain topographies and atmospheric conditions.
One main limitation of such standards is that the assumed flow and turbulence properties were established to fit databases gathered on a limited number of locations, which are by definition not representative of the quite various terrain configurations nor local micro-meteorological situations that can be met in practice. This is a concern for complex terrains and is furthermore hampering the implementation of wind turbines in urban environments, which constitutes nevertheless an important component of future environmentally-friendly Smart Cities thanks to the favorable local flow accelerations, pressure build-up, canyon effects, etc. offered by an urban canopy.
The ambition of this multi-disciplinary training platform is the development and application of advanced meso/microscale atmospheric models and the assessment of the impact of real terrain and local atmospheric effects on the predicted aerodynamic performance, structural dynamics and noise emissions. Obviously, human factors become a critical issue when considering implementing wind turbines in densely populated urban environments. The inter-dependencies between those factors (visual vs. acoustic effects, age or occupation, etc.), which complicate further the analysis of the motivations for a community to endorse or reject a new project, will be addressed as well.
Ámbito científico
Not validated
Not validated
- engineering and technologycivil engineeringurban engineeringsmart cities
- natural sciencescomputer and information sciencesdatabases
- natural sciencesphysical sciencesastronomyplanetary sciencesplanetary geology
- engineering and technologyenvironmental engineeringenergy and fuelsrenewable energywind power
- social sciencespsychologyergonomics
Palabras clave
Programa(s)
Régimen de financiación
MSCA-ITN - Marie Skłodowska-Curie Innovative Training Networks (ITN)Coordinador
1640 Sint-Genesius-Rode
Bélgica