Description du projet
Positionner les éoliennes de manière à optimiser leur production énergétique
Afin de répondre au besoin croissant en sources d’énergie respectueuses de l’environnement, les nations et les organisations du monde entier cherchent des moyens de produire autant d’énergie que possible à moindre coût. Dans ce contexte, l’énergie éolienne a le vent en poupe, mais ses performances dépendent de l’emplacement et du positionnement des turbines. Le projet zEPHYR, financé par l’UE, entend créer une plateforme qui permettra de mieux prendre en compte les emplacements où sont déployées les éoliennes afin de maximiser leur production d’énergie. Pour ce faire, il prévoit d’établir des modèles atmosphériques avancés à l’échelle méso/micro et de collecter des données sur l’impact du terrain physique, puis de définir des modèles atmosphériques locaux pour la recherche d’emplacements optimaux pour les éoliennes.
Objectif
The rise of a low-carbon society, compatible with economic growth and environmental sustainability, is pending on a number of technological evolutions and breakthroughs. In that line, the role played by wind energy is deemed to increase further in the next decades. The development of performant wind farms is pending upon the performance of each turbine composing the wind farm, and on the optimal harvesting of the local wind resources. A wind park performance is nowadays predicted assuming standard profiles of mean incoming velocity, turbulence intensities and scales, etc. corresponding to standard terrain topographies and atmospheric conditions.
One main limitation of such standards is that the assumed flow and turbulence properties were established to fit databases gathered on a limited number of locations, which are by definition not representative of the quite various terrain configurations nor local micro-meteorological situations that can be met in practice. This is a concern for complex terrains and is furthermore hampering the implementation of wind turbines in urban environments, which constitutes nevertheless an important component of future environmentally-friendly Smart Cities thanks to the favorable local flow accelerations, pressure build-up, canyon effects, etc. offered by an urban canopy.
The ambition of this multi-disciplinary training platform is the development and application of advanced meso/microscale atmospheric models and the assessment of the impact of real terrain and local atmospheric effects on the predicted aerodynamic performance, structural dynamics and noise emissions. Obviously, human factors become a critical issue when considering implementing wind turbines in densely populated urban environments. The inter-dependencies between those factors (visual vs. acoustic effects, age or occupation, etc.), which complicate further the analysis of the motivations for a community to endorse or reject a new project, will be addressed as well.
Champ scientifique
- engineering and technologycivil engineeringurban engineeringsmart cities
- natural sciencescomputer and information sciencesdatabases
- natural sciencesphysical sciencesastronomyplanetary sciencesplanetary geology
- engineering and technologyenvironmental engineeringenergy and fuelsrenewable energywind power
- social sciencespsychologyergonomics
Mots‑clés
Programme(s)
Régime de financement
MSCA-ITN - Marie Skłodowska-Curie Innovative Training Networks (ITN)Coordinateur
1640 Sint-Genesius-Rode
Belgique