Projektbeschreibung
Faire Algorithmen für künstliche Intelligenz
Auf künstlicher Intelligenz (KI) basierende Systeme werden zunehmend in Anwendungen verwendet, die automatisch Entscheidungen treffen oder Bewertungen abgeben. Sie können Einzelpersonen oder Gruppen bei wichtigen Fragen wie Zahlungen oder medizinischen Behandlungen beeinflussen. Dabei kann die Voreingenommenheit der KI jedoch ein Problem darstellen. Ursache für die Voreingenommenheit der KI-basierten Entscheidungen können die automatische Erzeugung der Daten, die Verarbeitung der Daten durch die Algorithmen oder die Nutzung der Anwendungen sein. Zur Beseitigung der KI-Voreingenommenheit auf allen drei Ebenen wird das EU-finanzierte Projekt NoBIAS fairnessbewusste Algorithmen entwickeln. Diese werden sich auf ethischen und rechtlichen Prinzipien gründen und als technische Lösung entwickelt werden – eine interdisziplinäre Bemühung von 15 Forscherinnen und Forschern aus Informatik, Datenwissenschaften, maschinellem Lernen, Rechtswissenschaften, Sozialwissenschaften und anderen Fachgebieten.
Ziel
Artificial Intelligence (AI)-based systems are widely employed nowadays to make decisions that have far-reaching impacts on individuals and society. Their decisions might affect everyone, everywhere and anytime entailing risks, such as being denied a credit, a job, a medical treatment, or specific news. Businesses might miss chances, because biases make AI-driven decisions underperform; much worse, they may contravene human rights when treating people unfairly.
Bias may arise at all stages of AI-based decision making processes: (i) when data is collected, (ii) when algorithms turn data into decision making capacity, or (iii) when results of decision making are used in applications. Therefore, it is necessary to move beyond traditional AI algorithms optimized for predictive performance and embed ethical and legal principles in the training, design and deployment of AI algorithms to ensure social good while still benefiting from the potential of AI.
NoBIAS will develop novel methods for AI-based decision making without bias by taking into account ethical and legal considerations in the design of technical solutions. The core objectives of NoBIAS are to understand legal, social and technical challenges of bias in AI-decision making, to counter them by developing fairness-aware algorithms, to automatically explain AI results, and to document the overall process for data provenance and transparency.
We will train a cohort of 15 ESRs (Early-Stage Researchers) to address problems with bias through multi-disciplinary training and research in computer science, data science, machine learning, law and social science. ESRs will acquire practical expertise in a variety of sectors from telecommunication, finance, marketing, media, software, and legal consultancy to broadly foster legal compliance and innovation. Technical, interdisciplinary and soft-skills will give ESRs a head start towards future leadership in industry, academia, or government.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
- Naturwissenschaften Informatik und Informationswissenschaften Software
- Sozialwissenschaften Rechtswissenschaften
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Wir bitten um Entschuldigung ... während der Ausführung ist ein unerwarteter Fehler aufgetreten.
Sie müssen sich authentifizieren. Ihre Sitzung ist möglicherweise abgelaufen.
Vielen Dank für Ihr Feedback. Sie erhalten in Kürze eine E-Mail zur Übermittlungsbestätigung. Wenn Sie sich für eine Benachrichtigung über den Berichtsstatus entschieden haben, werden Sie auch im Falle einer Änderung des Berichtsstatus benachrichtigt.
Schlüsselbegriffe
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Schlüsselbegriffe des Projekts, wie vom Projektkoordinator angegeben. Nicht zu verwechseln mit der EuroSciVoc-Taxonomie (Wissenschaftliches Gebiet).
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen -
H2020-EU.1.3.1. - Fostering new skills by means of excellent initial training of researchers
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
MSCA-ITN - Marie Skłodowska-Curie Innovative Training Networks (ITN)
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) H2020-MSCA-ITN-2019
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenKoordinator
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
30167 Hannover
Deutschland
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.