Project description
Teasing out differences in tangled chromatin may reveal a pathogen's recipe for success
Most pathogens are single-celled organisms, or in the case of viruses, small parasitic particles consisting of nucleic acid and outer protein shells. Once they have successfully invaded our bodies, some within the same community are more successful at establishing infection than others. Extensive research has revealed global mechanisms for pathogen adaptation and survival. However, little is known about local variations or cell-to-cell heterogeneity within the same microbial population. Cell2Cell is studying that heterogeneity at the level of chromatin, the DNA and histone proteins its wound around that make up chromosomes. Ground-breaking studies will help elucidate how chromatin is organised in pathogens and how chromatin heterogeneity might favour successful colonisation by certain cells, providing ammunition in the war against often-deadly invaders.
Objective
Infectious diseases kill millions of people worldwide every year. Decades of research have revealed important insights into the molecular mechanisms pathogens employ to establish lasting infections, yet little is known about what renders individual pathogens within a microbial population more successful at establishing an infection than others. Recent advances in single-cell technologies have started to revolutionize modern biology, unveiling an enormous degree of cell-to-cell heterogeneity. Often, phenotypic variability is not caused by genetic changes in the DNA sequence, but by epigenetic changes in the structural organization of DNA called chromatin. In multicellular organisms, this epigenetic plasticity plays a key role in developmental processes and cancer. In unicellular pathogens, cell-to-cell heterogeneity is hypothesized to promote the establishment of infections by allowing the pathogen to adapt to changing environments or evade the host immune response. To decrease the burden of infectious diseases, it is therefore, necessary to better understand how infections are enabled by cellular heterogeneity at the chromatin level of the pathogen. Several limitations have previously challenged this endeavor, including small genome size (i.e. low signal-to-noise) and the lack of knowledge of how chromatin is organized in pathogens. Cell2Cell proposes to overcome these barriers by bringing together (1) experts in pathogen biology; (2) the use of unicellular yeast species to serve as chromatin models; (3) single-cell technologies; (4) bioinformatics tools. Using state of the art technologies, we will train early stage researchers to identify the molecular mechanisms that control cell-to-cell heterogeneity in pathogens. The proposed research will contribute to the elucidation of how heterogeneity affects the outcome of diseases and give rise to highly skilled scientists that are well prepared to face the demands of modern genomics research in academia and industry.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences genetics DNA
- medical and health sciences clinical medicine oncology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.1. - Fostering new skills by means of excellent initial training of researchers
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-ITN - Marie Skłodowska-Curie Innovative Training Networks (ITN)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-ITN-2019
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80539 MUNCHEN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.