Project description
Reducing fuel consumption with rear-mounted engines
Boundary layer ingestion (BLI) is a promising technology under investigation that could help reduce aircraft fuel burn. With BLI, aircraft engines will be located near the rear of the aircraft so that air flowing over the aircraft body becomes part of the mix of air going into the engine and is then accelerated out the back. However, determining these engines’ actual performance experimentally is challenging. The EU-funded SUBLIME project is developing a flexible and robust experimental set-up to establish dependencies amongst the propulsor shape/position, the fan inlet distortion pattern and the corresponding power savings. The project will conduct wind tunnel experiments supported by high-fidelity computational fluid dynamics simulations to predict the full-scale behaviour of the aircraft architectures suitable for appropriate propulsor installation.
Objective
SUBLIME (Supporting Understanding of Boundary Layer Ingestion Model Experiment)
The introduction of engines integrated with the rear fuselage (BLI engines) in large passenger aircrafts poses new challenges regarding accurate experimental assessment of their performance, especially in terms of power savings, over conventional propulsive architectures (e.g. podded engines) as the engine is fed with a distorted flow. The SUBLIME project will address this challenge, resulting in a flexible and robust experimental set-up to establish dependencies among the propulsor shape/position, the fan inlet distortion pattern and the corresponding power savings. A consortium of an R&D institute, an SME, and 2 Universities with complementary skills will produce this result in close coordination with the topic manager in 36 months, asking for a grant of € 3.612.500.
Coordinator ARA will provide a number of aircraft configurations equipped with BLI propulsors integrated in the rear fuselage, designed and optimized in cooperation with HIT09 (mainly responsible for CFD studies and fan design), Cranfield University (mainly responsible for theoretical and experimental force bookkeeping) and Chalmers University of Technology (mainly involved in engine cycle studies), to be subsequently manufactured and tested by ARA in their transonic wind tunnel.
The project will advance the state of the art in BLI studies by means of wind tunnel activities supported by high-fidelity CFD simulations to consistently predict full-scale behaviour of the aircraft architectures suitable for appropriate propulsor installation which minimizes inlet flow distortions and maximizes power saving. The results of installed wind-tunnel tested aircraft+propulsors will be delivered in full compliance with the call. SUBLIME will provide methodologies, tools and facilities to the European aviation industry, therefore contributing to releasing the full potential of power saving of BLI engines.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology mechanical engineering vehicle engineering aerospace engineering aircraft
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.3.4. - SOCIETAL CHALLENGES - Smart, Green And Integrated Transport
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.3.4.5.1. - IADP Large Passenger Aircraft
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-CS2-CFP09-2018-02
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
35122 PADOVA
Italy
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.