Project description
Microcavity laser breakthrough for ultraviolet light
The EU-funded UV-LASE project aims to produce the first microcavity laser capable of generating ultraviolet light that could be applied to the real world. Thanks to the project's groundbreaking work, high optical losses and defect densities will no longer hinder implementation of this type of laser. The project approach is based on a unique membrane technique that enables vertical cavity lasers with highly reflective dielectric mirrors on both sides of the cavity – a device concept previously impossible to realise for ultraviolet lasers. The proposed design will also result in a tenfold increase in the optical output power, as it provides a route around anti-guiding, an overlooked loss mechanism in microcavities.
Objective
Achieving ultraviolet (UV) emission has proven to be difficult, in particular for microcavity lasers due to high optical losses and defect densities. Our group, with a world-leading position in microcavity laser research, has identified new possibilities to combat these challenges in both ultraviolet and blue-emitting devices. By using these breakthroughs, we aim to develop the first electrically injected blue microcavity laser with good enough performance to be useful in real-world applications and project out of the blue and into the ultraviolet to realize the very first electrically injected UV microcavity laser. Our two recent breakthroughs are:
1. The discovery of an overlooked loss mechanism in microcavities and schemes to circumvent it. Our proposed designs to circumvent this unintentional anti-guiding are being implemented worldwide and have led to a tenfold increase in optical output power in blue lasers.
2. A unique membrane technique to enable microcavity lasers with highly reflective dielectric mirrors on both sides of the cavity a device concept previously un-realizable for UV-lasers. The method is based upon electrochemical etching of the chemically inert material AlGaN (the material of choice for UV), which enables lift-off of device membranes with smooth surfaces from the substrate and mirror-deposition on the bottom side. Our recent demonstration of the worlds first thin-film, flip-chip UV-B LED with this technique holds great promises for microcavity lasers.
These two new approaches will be combined with a focused effort to circumvent the problem of low electrical conductivity of p-doped materials. We will strengthen our capabilities by developing tunnel junctions, allowing highly conductive n-doped material to be used throughout virtually the entire laser. This will drastically reduce losses, which cause degradation within minutes in blue microcavity lasers, and might be the only solution to electrically driven UV microcavity lasers.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
412 96 Goteborg
Sweden
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.