Skip to main content
CORDIS - Forschungsergebnisse der EU
CORDIS

Advancing the Equation of state of Neutron Stars

Projektbeschreibung

Forschung rückt ultradichte Neutronensternmaterie ins Licht

Neutronensterne bestehen aus Kernmaterie unter den Bedingungen extrem hoher Dichte. Sie bieten die Chance, stabile Zustände der Strange-Quark-Materie zu finden. Unsere Ungewissheit über die Beschaffenheit der kalten ultradichten Materie ist in jener Zustandsgleichung verschlüsselt, die über die Sternstrukturgleichungen auf Größen wie Masse und Radius abgebildet werden kann. Das EU-finanzierte Projekt AEONS wird ein neu entwickeltes Verfahren zur Messung von Masse und Radius verfeinern, das relativistische Effekte der von Hotspots auf der Neutronensternoberfläche ausgesandten Röntgenstrahlen ausnutzt: die Pulsprofilmodellierung. AEONS plant, die Randbedingungen für Modelle der dichten Materie unter Einsatz von Daten des NICER-Moduls (Neutron Star Interior Composition Explorer) der NASA und mit Blick auf die nächste Generation von Röntgen-Weltraumteleskopen genauer einzugrenzen.

Ziel

Densities in neutron star (NS) cores can reach up to ten times the density of a normal atomic nucleus, and the stabilising effect of gravitational confinement permits long-timescale weak interactions. This generates nucleonic matter that is extremely neutron-rich, and the exciting possibility of stable states of strange matter (hyperons or deconfined quarks). Our uncertainty about the nature of cold ultradense matter is encoded in the Equation of State (EOS), which can be mapped via the stellar structure equations to quantities like mass M and radius R that determine the exterior space-time.

One very promising technique for measuring the EOS exploits hotspots that form on the NS surface due to the pulsar mechanism, accretion streams, or during thermonuclear explosions in the stellar ocean. As the NS rotates, the hotspot gives rise to a pulsation and relativistic effects encode information about the EOS into the pulse profile. Pulse Profile Modelling (PPM), which employs relativistic ray-tracing and Bayesian inference codes to measure M-R and the EOS, is being pioneered by NASA’s NICER telescope, which is poised to deliver its first results in 2019.

Complexities, that have only become apparent with exposure to real data, mean that there is work to be done if we are to have confidence in the nominal 5-10% accuracy of NICER’s M-R results. AEONS will deliver this. The project will also look ahead to the next generation of large-area X-ray timing telescopes, since it is only then that PPM will place tight constraints on dense matter models. The sources these missions target, accreting neutron stars, pose challenges for PPM such as variability, surface pattern uncertainty, and polarimetric signatures. AEONS will develop a robust pipeline for accreting NS PPM and embed it in a multi-messenger EOS inference framework with radio and gravitational wave constraints. This will ensure that PPM delivers major advances in our understanding of the nature of matter.

Gastgebende Einrichtung

UNIVERSITEIT VAN AMSTERDAM
Netto-EU-Beitrag
€ 2 425 000,00
Adresse
SPUI 21
1012WX Amsterdam
Niederlande

Auf der Karte ansehen

Region
West-Nederland Noord-Holland Groot-Amsterdam
Aktivitätstyp
Higher or Secondary Education Establishments
Links
Gesamtkosten
€ 2 425 000,00

Begünstigte (1)