Descrizione del progetto
La ricerca potrebbe fare maggiore chiarezza sulla materia ultradensa delle stelle di neutroni
Le stelle di neutroni sono costituite da materia nucleare in condizioni di altissima densità e offrono la possibilità di trovare stati stabili di materia a quark strani. La nostra incertezza a proposito della natura della materia fredda ultradensa è codificata nell’equazione di stato, che può essere mappata attraverso le equazioni della struttura stellare a quantità come la massa e il raggio. Il progetto AEONS, finanziato dall’UE, sta perfezionando una tecnica di recente sviluppo per la misurazione di massa e raggio che sfrutta gli effetti relativistici sui raggi X emessi dai punti caldi sulla superficie della stella di neutroni: la modellazione del profilo degli impulsi. Utilizzando i dati del Neutron Star Interior Composition Explorer della NASA e guardando alla prossima generazione di telescopi spaziali a raggi X, AEONS cerca di porre vincoli stretti ai modelli di materia densa.
Obiettivo
Densities in neutron star (NS) cores can reach up to ten times the density of a normal atomic nucleus, and the stabilising effect of gravitational confinement permits long-timescale weak interactions. This generates nucleonic matter that is extremely neutron-rich, and the exciting possibility of stable states of strange matter (hyperons or deconfined quarks). Our uncertainty about the nature of cold ultradense matter is encoded in the Equation of State (EOS), which can be mapped via the stellar structure equations to quantities like mass M and radius R that determine the exterior space-time.
One very promising technique for measuring the EOS exploits hotspots that form on the NS surface due to the pulsar mechanism, accretion streams, or during thermonuclear explosions in the stellar ocean. As the NS rotates, the hotspot gives rise to a pulsation and relativistic effects encode information about the EOS into the pulse profile. Pulse Profile Modelling (PPM), which employs relativistic ray-tracing and Bayesian inference codes to measure M-R and the EOS, is being pioneered by NASAs NICER telescope, which is poised to deliver its first results in 2019.
Complexities, that have only become apparent with exposure to real data, mean that there is work to be done if we are to have confidence in the nominal 5-10% accuracy of NICERs M-R results. AEONS will deliver this. The project will also look ahead to the next generation of large-area X-ray timing telescopes, since it is only then that PPM will place tight constraints on dense matter models. The sources these missions target, accreting neutron stars, pose challenges for PPM such as variability, surface pattern uncertainty, and polarimetric signatures. AEONS will develop a robust pipeline for accreting NS PPM and embed it in a multi-messenger EOS inference framework with radio and gravitational wave constraints. This will ensure that PPM delivers major advances in our understanding of the nature of matter.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Parole chiave
Programma(i)
Argomento(i)
Invito a presentare proposte
(si apre in una nuova finestra) ERC-2019-COG
Vedi altri progetti per questo bandoMeccanismo di finanziamento
ERC-COG - Consolidator GrantIstituzione ospitante
1012WX Amsterdam
Paesi Bassi