Project description
Forecasting the threat of destruction
There are an estimated 1 500 potentially active volcanoes on land worldwide. Many appear to have been ‘dead’ for centuries, but may be only ‘sleeping’. In 2019, there were 73 confirmed eruptions from 70 different volcanoes. While deadly eruptions are not common, they do happen. This is why forecasting eruptions – the time and severity – is so important. The EU-funded DEEPVOLC is applying advances in artificial intelligence and satellite monitoring to create transformative new geodetic datasets. Specifically, it will base observations on the recently-launched European satellite mission, Sentinel-1S, which has advanced scientists’ ability to measure surface deformation at all volcanos worldwide. Ultimately, it will create a system to monitor and forecast deformation, which is caused by magma migrating beneath – an indicator of potential volcanic activity.
Objective
DEEPVOLC will radically advance the way future activity is forecast at volcanoes by applying advances in artificial intelligence to transformative new geodetic datasets. 200 million people live within 30 km of a volcano. Accurate forecasting of volcanic eruptions is problematic because 1) it relies on human interpretation at individual volcanoes, 2) a volcano can behave in unexpected ways not previously seen at that location, and 3) most volcanoes are not instrumented. DEEPVOLC will address this by i) applying artificial intelligence, ii) using data for all volcanoes worldwide, and iii) exploiting advances in satellite monitoring. A key indicator of potential volcanic activity is deformation of a volcano's surface due to magma migrating beneath. Surface movements as small as a few millimetres can now be measured from space, using satellite-borne radar. A recently-launched European satellite mission, Sentinel-1, has transformed our ability to measure surface deformation at all of the world's volcanoes, acquiring data at least twice every twelve days. However, forecasting how deforming volcanoes will behave in the future remains challenging. In this project I will apply recently developed deep learning approaches to the satellite data. This is an entirely new approach to forecasting volcanic activity, which currently relies on the individual expertise available at each observatory, and which is only now made possible due to the launch of Sentinel-1 and advances in deep learning algorithms. DEEPVOLC will combine knowledge from all volcanoes that have been active in the era of satellite deformation observations, and will continue to improve as it ingests data from new activity. The main deliverable will be a system for volcano observatories that uses knowledge of how volcanoes behave globally to automatically identify deformation at volcanoes locally, and forecast how the deformation will evolve, indicating the probability of eruption.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology mechanical engineering vehicle engineering aerospace engineering satellite technology
- natural sciences earth and related environmental sciences geology volcanology
- engineering and technology electrical engineering, electronic engineering, information engineering information engineering telecommunications radio technology radar
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
LS2 9JT Leeds
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.