Skip to main content
Vai all'homepage della Commissione europea (si apre in una nuova finestra)
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

Forecasting volcanic activity using deep learning

Descrizione del progetto

Prevedere la minaccia di distruzione

Si stima che in tutto il mondo ci siano circa 1 500 vulcani potenzialmente attivi sulla terraferma: molti sembrano essere «morti» da secoli, ma alcuni potrebbero essere solo «dormienti». Nel 2019, ci sono state 73 eruzioni confermate da 70 vulcani diversi. Le eruzioni mortali non sono comuni, ma accadono: ecco perché prevedere le eruzioni (il tempo e la gravità) è così importante. Il progetto DEEPVOLC, finanziato dall’UE, sta applicando i progressi dell’intelligenza artificiale e del monitoraggio satellitare per creare nuovi set di dati geodetici trasformativi. In particolare, baserà le sue osservazioni sulla missione satellitare europea Sentinel-1S, lanciata di recente, che ha fatto progredire la capacità degli scienziati di misurare le deformazioni superficiali di tutti i vulcani del mondo. In definitiva, il progetto creerà un sistema per monitorare e prevedere le deformazioni provocate dalla migrazione del magma sottostante, un indicatore di potenziale attività vulcanica.

Obiettivo

DEEPVOLC will radically advance the way future activity is forecast at volcanoes by applying advances in artificial intelligence to transformative new geodetic datasets. 200 million people live within 30 km of a volcano. Accurate forecasting of volcanic eruptions is problematic because 1) it relies on human interpretation at individual volcanoes, 2) a volcano can behave in unexpected ways not previously seen at that location, and 3) most volcanoes are not instrumented. DEEPVOLC will address this by i) applying artificial intelligence, ii) using data for all volcanoes worldwide, and iii) exploiting advances in satellite monitoring. A key indicator of potential volcanic activity is deformation of a volcano's surface due to magma migrating beneath. Surface movements as small as a few millimetres can now be measured from space, using satellite-borne radar. A recently-launched European satellite mission, Sentinel-1, has transformed our ability to measure surface deformation at all of the world's volcanoes, acquiring data at least twice every twelve days. However, forecasting how deforming volcanoes will behave in the future remains challenging. In this project I will apply recently developed deep learning approaches to the satellite data. This is an entirely new approach to forecasting volcanic activity, which currently relies on the individual expertise available at each observatory, and which is only now made possible due to the launch of Sentinel-1 and advances in deep learning algorithms. DEEPVOLC will combine knowledge from all volcanoes that have been active in the era of satellite deformation observations, and will continue to improve as it ingests data from new activity. The main deliverable will be a system for volcano observatories that uses knowledge of how volcanoes behave globally to automatically identify deformation at volcanoes locally, and forecast how the deformation will evolve, indicating the probability of eruption.

Campo scientifico (EuroSciVoc)

CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP. Cfr.: Il Vocabolario Scientifico Europeo.

È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione

Parole chiave

Parole chiave del progetto, indicate dal coordinatore del progetto. Da non confondere con la tassonomia EuroSciVoc (campo scientifico).

Programma(i)

Programmi di finanziamento pluriennali che definiscono le priorità dell’UE in materia di ricerca e innovazione.

Argomento(i)

Gli inviti a presentare proposte sono suddivisi per argomenti. Un argomento definisce un’area o un tema specifico per il quale i candidati possono presentare proposte. La descrizione di un argomento comprende il suo ambito specifico e l’impatto previsto del progetto finanziato.

Meccanismo di finanziamento

Meccanismo di finanziamento (o «Tipo di azione») all’interno di un programma con caratteristiche comuni. Specifica: l’ambito di ciò che viene finanziato; il tasso di rimborso; i criteri di valutazione specifici per qualificarsi per il finanziamento; l’uso di forme semplificate di costi come gli importi forfettari.

ERC-COG - Consolidator Grant

Vedi tutti i progetti finanziati nell’ambito di questo schema di finanziamento

Invito a presentare proposte

Procedura per invitare i candidati a presentare proposte di progetti, con l’obiettivo di ricevere finanziamenti dall’UE.

(si apre in una nuova finestra) ERC-2019-COG

Vedi tutti i progetti finanziati nell’ambito del bando

Istituzione ospitante

UNIVERSITY OF LEEDS
Contributo netto dell'UE

Contributo finanziario netto dell’UE. La somma di denaro che il partecipante riceve, decurtata dal contributo dell’UE alla terza parte collegata. Tiene conto della distribuzione del contributo finanziario dell’UE tra i beneficiari diretti del progetto e altri tipi di partecipanti, come i partecipanti terzi.

€ 1 941 270,00
Indirizzo
WOODHOUSE LANE
LS2 9JT Leeds
Regno Unito

Mostra sulla mappa

Regione
Yorkshire and the Humber West Yorkshire Leeds
Tipo di attività
Higher or Secondary Education Establishments
Collegamenti
Costo totale

I costi totali sostenuti dall’organizzazione per partecipare al progetto, compresi i costi diretti e indiretti. Questo importo è un sottoinsieme del bilancio complessivo del progetto.

€ 1 941 270,00

Beneficiari (2)

Il mio fascicolo 0 0