Project description
Studying mouse vision with an eagle’s eye
Although we have made tremendous progress in understanding how the brain works, we have likely just scratched the tip of the iceberg. Neuronal plasticity, or the ability of the brain’s circuitry to change structurally and functionally, underlies learning and memory. There are many different types of both. When it comes to associating a visual stimulus with a reward – as Pavlov’s dogs associated an auditory stimulus with food – the cellular mechanisms underlying the experience-dependent changes in neural response in the primary visual cortex (V1) are not well understood. Local circuits (for example, inhibitory interneurons) and feedback from other regions likely play a role in the adaptive responses of primary sensory cortex neurons. The EU-funded project SweetVision is evaluating the neuronal circuits underlying the dynamic regulation of V1 neuronal responses that optimize information processing for behaviorally relevant stimuli, such as those associated with a reward, while suppressing responses to irrelevant stimuli that may act as distractors.
Objective
Our ability to learn relies on the potential of neuronal circuits to change through experience. The overall theme of this project is to understand how sensory cortical circuits are modified by experience and learning. Recent results have shown that learning the association of a visual stimulus with a reward modifies neuronal responses in primary visual cortex (V1). However, the cellular mechanisms underlying these experience-dependent changes remain largely unknown. Computational and experimental studies suggest that feedback pathways are crucial for adapting sensory processing by task demands, together with local interneurons that gate feedback through dendritic inhibition. I will test the hypothesis that feedback projections from higher level areas selectively enhance task-relevant information in V1 and that this process depends on dorsomedial striatal (DMS) output.
Toward this aim, I am using chronic two-photon calcium imaging to monitor the activity of neuronal sub-populations in mouse V1, before, during and after two types of visual experience: a passive exposure to a visual stimulus and a rewarded visually-guided task. Published and preliminary results indicate that the representation of task-relevant features is enhanced and stabilised in V1 during learning while responses to non-relevant stimuli are suppressed.
This project is organized around 3 aims:
1. To characterize top-down inputs to V1 neurons during passive and rewarded visual experience.
2. To characterize local circuits and single-neuron computation of task-relevant features within V1
3. To characterize the output of V1 neurons to higher cortical areas and DMS, during goal-directed learning.
The expected results will show how behavioural training changes the neocortex to improve the encoding of behaviourally relevant visual objects. This project will uncover the circuits that are changed by and in turn dynamically gate relevant sensory information when an animal is learning a goal-directed task.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
EH8 9YL Edinburgh
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.