Project description
Printing personalised food for the elderly
Healthy aging requires healthy eating habits, but older adults are vulnerable to malnutrition. This is mainly due to decreased appetite, dental problems, psychosocial issues and chronic disease. Early detection of malnutrition allows for a timely intervention. The EU-funded 3D-NANOFOOD project will assist by manufacturing personalised foods with superior nutrition. To do so, it will exploit 3D printing for fast food manufacturing and flexibility. The project will use nanostructured delivery systems for protecting and enhancing the performance of functional compounds. It will evaluate the quality and functionality of the new foods, as well as create an industrial protocol for printed foods manufacturing.
Objective
Ageing accelerates the prevalence of malnutrition due to physiological changes, such as masticatory and swallowing dysfunctions, body composition changes and special nutrition needs. In addition, degradation of sensory functions in seniors results in an appetite decrease. Therefore, personalised foods that enable optimal nutritional maintenance and food pleasantness are required, being a cornerstone for healthy ageing. The main goal of this research project is to provide innovative and feasible strategies to manufacture personalised foods for older adults with superior nutrition and sensory properties. This action proposes the combination of promising techniques including nanoencapsulation, food enrichment and 3D printing to manufacture personalised foods. 3D printing is a versatile and emerging technology that will enable fast food manufacturing and flexibility to formulate products with target texture and special nutrition needs. Food enrichment with functional compounds (e.g. flavourings and bioactive compounds) can improve the quality and functionality of printed foods. For instance, flavourings can reinforce the taste and smell of printed foods, making them more palatable; while fortification with bioactive compounds can promote health. However, the process of food fortification entails technological challenges, affecting the food attributes. This will be addressed using nanostructured delivery systems for protecting and/or enhancing the performance of functional compounds. The work plan of this project proposes: 1) the fabrication of nanoparticles and nanostructured layers using electrospraying and ultrasonic spray for delivering bioactive compounds and flavours; 2) the design of texture-modified foods using 3D printing containing nanoparticles or nanostructured layers loaded with functional compounds; 3) the evaluation of the quality and functionality of the new foods developed, and 4) the development of an industrial protocol for printed foods manufacturing.
Fields of science
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
Keywords
Programme(s)
Topic(s)
Funding Scheme
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Coordinator
4715-330 Braga
Portugal