Projektbeschreibung
Kosten- und zeiteffizientes KI-Werkzeug minimiert Programmierfehler in Softwareprogrammen
Mit an Wahrscheinlichkeit grenzender Sicherheit schleichen sich beim Programmieren Fehler ein, denn jedes Softwareprogramm besteht aus Millionen Zeilen von Quellcode. Daher ist es nötig, jedes einzelne Programm unzählige Male zu überprüfen und entsprechend zu korrigieren. Das Verfahren, das derzeit bei der Quellcode-Überprüfung Anwendung findet, verursacht hohe Kosten, ist äußerst langwierig und führt nicht immer zum Erfolg bei der Quellcode-Korrektur. Das EU-finanzierte Projekt DC-IR wird eine Plattform bereitstellen, die unter Nutzung künstlicher Intelligenz (KI) automatisch Quellcode von Software überprüft. Die anschließend von der Plattform gelieferten Anregungen basieren auf einem Vergleich mit in der Vergangenheit gefundenen Lösungen für ähnliche Quellcode-Probleme. Die Plattform zeigt Programmiererinnen und Programmierern außerdem Möglichkeiten auf, wie sich Quellcode verbessern lässt, und bietet bei nahezu allen, mit Software in Verbindung stehenden Fragen Unterstützung. Schätzungen zufolge sollen Nutzende dank der Lösung etwa 20 % an Entwicklungszeit einsparen können.
Ziel
Software has become very complex with time, with each software program having millions of lines of code. With so many code lines, it is close to impossible not to make errors when coding. The number of code defects rises proportionally with more code lines, (approx. 10-20 defects per 1,000 lines of code). This necessitates millions of code reviews and code fixes for a single software program. The current code review process is very expensive, time consuming (with companies like Google spending >25% of their time on code reviews) and often does not guarantee success in fixing the code. The software industry needs a cost & time-effective code analysis tool that is unlimited in detectable code errors and programming languages.
Our solution is DeepCode AI Code Review (DC-IR), an Artificial Intelligence (AI) platform that automatically performs reviews on software code and provides suggestions based on Big Code learnings (how others solved similar code related problems). Our platform is trained from millions of Open Source repositories (billions of lines of code; thousands of frameworks & millions of code fixes) and uses these data sets to suggest code improvements for programmers. DC-IR integrates many levels of program code analysis into proprietary Machine Learning (ML) representations which are used by powerful ML techniques to create Data Sets that can answer almost any question about a software in a language independent manner. DC-IR offers a full set of services for code optimisation with solutions for code fixes & quality assurance. DC-IR enables developers to save 20% of development time, leading to savings of €11,856 annually per developer, which compounded globally can save the industry >€52Bn annually.
DC-IR is at an advanced stage of development with a Beta version already deployed and having more than 5k users, some using paid licenses. During Ph1, we will develop a road map to finalise DC-IR and Ph2 will see us developing and validating the market versión.
Wissenschaftliches Gebiet (EuroSciVoc)
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
CORDIS klassifiziert Projekte mit EuroSciVoc, einer mehrsprachigen Taxonomie der Wissenschaftsbereiche, durch einen halbautomatischen Prozess, der auf Verfahren der Verarbeitung natürlicher Sprache beruht. Siehe: Das European Science Vocabulary.
- Sozialwissenschaften Soziologie industrielle Beziehungen Automatisierung
- Naturwissenschaften Informatik und Informationswissenschaften Software Softwareentwicklung
- Naturwissenschaften Informatik und Informationswissenschaften künstliche Intelligenz maschinelles Lernen
Sie müssen sich anmelden oder registrieren, um diese Funktion zu nutzen
Wir bitten um Entschuldigung ... während der Ausführung ist ein unerwarteter Fehler aufgetreten.
Sie müssen sich authentifizieren. Ihre Sitzung ist möglicherweise abgelaufen.
Vielen Dank für Ihr Feedback. Sie erhalten in Kürze eine E-Mail zur Übermittlungsbestätigung. Wenn Sie sich für eine Benachrichtigung über den Berichtsstatus entschieden haben, werden Sie auch im Falle einer Änderung des Berichtsstatus benachrichtigt.
Programm/Programme
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
Mehrjährige Finanzierungsprogramme, in denen die Prioritäten der EU für Forschung und Innovation festgelegt sind.
-
H2020-EU.2.3. - INDUSTRIAL LEADERSHIP - Innovation In SMEs
HAUPTPROGRAMM
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen -
H2020-EU.3. - PRIORITY 'Societal challenges
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen -
H2020-EU.2.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
Alle im Rahmen dieses Programms finanzierten Projekte anzeigen
Thema/Themen
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Aufforderungen zur Einreichung von Vorschlägen sind nach Themen gegliedert. Ein Thema definiert einen bestimmten Bereich oder ein Gebiet, zu dem Vorschläge eingereicht werden können. Die Beschreibung eines Themas umfasst seinen spezifischen Umfang und die erwarteten Auswirkungen des finanzierten Projekts.
Finanzierungsplan
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
Finanzierungsregelung (oder „Art der Maßnahme“) innerhalb eines Programms mit gemeinsamen Merkmalen. Sieht folgendes vor: den Umfang der finanzierten Maßnahmen, den Erstattungssatz, spezifische Bewertungskriterien für die Finanzierung und die Verwendung vereinfachter Kostenformen wie Pauschalbeträge.
SME-1 - SME instrument phase 1
Alle im Rahmen dieses Finanzierungsinstruments finanzierten Projekte anzeigen
Aufforderung zur Vorschlagseinreichung
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
Verfahren zur Aufforderung zur Einreichung von Projektvorschlägen mit dem Ziel, eine EU-Finanzierung zu erhalten.
(öffnet in neuem Fenster) H2020-EIC-SMEInst-2018-2020
Alle im Rahmen dieser Aufforderung zur Einreichung von Vorschlägen finanzierten Projekte anzeigenKoordinator
Finanzieller Nettobeitrag der EU. Der Geldbetrag, den der Beteiligte erhält, abzüglich des EU-Beitrags an mit ihm verbundene Dritte. Berücksichtigt die Aufteilung des EU-Finanzbeitrags zwischen den direkten Begünstigten des Projekts und anderen Arten von Beteiligten, wie z. B. Dritten.
8032 ZURICH
Schweiz
Die Organisation definierte sich zum Zeitpunkt der Unterzeichnung der Finanzhilfevereinbarung selbst als KMU (Kleine und mittlere Unternehmen).
Die Gesamtkosten, die dieser Organisation durch die Beteiligung am Projekt entstanden sind, einschließlich der direkten und indirekten Kosten. Dieser Betrag ist Teil des Gesamtbudgets des Projekts.