Descrizione del progetto
Efficienza elevata per la produzione simultanea di calore e di energia
Soddisfare la crescente domanda globale di energia in modo sostenibile è una delle più grandi sfide del 21° secolo. La microcogenerazione simultanea di calore ed elettricità (micro-PCCE) è una tecnologia a basse emissioni di carbonio per abitazioni ed edifici singoli che genera contemporaneamente calore ed elettricità. I sistemi basati su celle a combustibile a elettrolito polimerico ad alta temperatura (HT-PEMFC, high-temperature polymer electrolyte membrane fuel cells) sono tra i più promettenti per l’efficienza molto elevata e le basse emissioni. Il progetto EMPOWER, finanziato dall’UE, sta elaborando significativi miglioramenti di questa preziosa tecnologia, per fornire un sistema di micro-PCCE basato sulle HT-PEMFC alimentato a metanolo, adatto anche per il settore PCCE e marittimo. Il finanziamento UE sostiene l’ottimizzazione e la convalida tecnica della tecnologia, nonché l’analisi commerciale necessaria per prepararsi alla commercializzazione.
Obiettivo
In the EMPOWER project a methanol fuelled 5 kWe mini-CHP system based on HTPEMFC technology is developed, manufactured and validated in a relevant environment. The system efficiency over 50% (DC, LHV) is achieved with novel ideas of thermal integration with a two-stage reformer setup and by using thermoelectric generators (TEG), utilising the high temperature heat of HTPEMFC stack.
An aqueous phase reformer (APR) for methanol pre-reforming is applied for the first time in a commercial scale HTPEMFC system. The use of APR and its thermal integration in the FC system enables efficient utilisation of the stack waste heat and enables reformer efficiency approaching 95%. The best available catalysts will be screened and adapted for the reformer, both for the APR and for the 2nd stage reformer, which employs commercialised reformer technology from project partner Catator and recently developed methanol-reforming catalyst from partner University of Porto.
The system efficiency is further improved by increasing the fuel utilization to above 95% in the HTPEMFC stack. This is enabled by improving anode gas flow distribution in the cells as well as improving the stack end plates. The new end plate design will also enable stack pressurising and improving stack efficiency over 55 %.
The improvements in the HTPEM system design for mini-CHP use are validated in relevant environment, coupled to the heating and power system of a detached house, so that reliable data of the operation and stability can be generated.
The accelerated test will be carried out for a period of 6 months and for at least 2,000 h of operation. Lastly, the project includes planning for scaling both the reformer solution and CHP system to 50-100 kWe size, including the addition of expanders.
The technical work is complemented with a business analysis, including all the relevant elements of the methanol FC value chain, for the use of the developed technology in micro-CHP, CHP and maritime sectors.
Campo scientifico (EuroSciVoc)
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
CORDIS classifica i progetti con EuroSciVoc, una tassonomia multilingue dei campi scientifici, attraverso un processo semi-automatico basato su tecniche NLP.
- ingegneria e tecnologiaingegneria elettrica, ingegneria elettronica, ingegneria informaticaingegneria elettrotecnicaingegneria energeticagenerazione di energia elettricacogenerazione
- scienze naturaliscienze chimichechimica organicaalcoli
- scienze naturaliscienze chimichecatalisi
- ingegneria e tecnologiaingegneria ambientaleenergia e carburanti
È necessario effettuare l’accesso o registrarsi per utilizzare questa funzione
Parole chiave
Programma(i)
Argomento(i)
Meccanismo di finanziamento
RIA - Research and Innovation actionCoordinatore
02150 Espoo
Finlandia