European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Identifying the steps required for meiotic DNA double-strand break formation

Description du projet

Une vision moléculaire de la recombinaison chromosomique pendant la méiose

La formation de cassures double-brin (DSBs pour «double stranded breaks») de l’ADN lors de la division méiotique est nécessaire pour la recombinaison et la fertilité. Cependant, les DSBs méiotiques constituent un défi de taille pour l’intégrité génomique. Le projet DSBSunrise, financé par l’UE, étudiera l’hypothèse selon laquelle ce processus est étroitement régulé afin de garantir la réparation efficace des DSBs de l’ADN par une recombinaison homologue. Les chercheurs fourniront des informations topologiques sur ce processus et identifieront les sites où génomiques surviennent les DSBs. Ils étudieront également la manière dont les sites de DSB interagissent avec les composants structurels du mécanisme de réparation, offrant ainsi une connaissance fondamentale sur ce processus complexe de recombinaison chromosomique méiotique.

Objectif

At the onset of prophase of the first meiotic division, meiotic cells undergo complex molecular events with the induction of several hundred DNA double-strand breaks. These DNA breaks are required because they initiate recombination between homologous chromosomes and to allow chromosome segregation during meiosis. They are essential for fertility. However, they represent a major challenge for genome integrity.

It is thought that meiotic DNA break formation is under tight control to ensure that all breaks are properly repaired to maintain genome integrity. But how this control implemented is unknown.

We postulate that three critical steps take place to ensure meiotic DNA break formation at the right time, right place, and right frequency. We will test this hypothesis by addressing in mice the three following questions:

Q1: We will ask whether a homology-sensing process brings homologous chromosomes in spatial proximity before DNA break formation to improve DSB repair efficiency and avoid topological conflicts. If this is the case, we will determine the molecular mechanism.

Q2: We will determine whether the genomic sites undergoing DNA breakage interact with structural components of chromosome axes before break formation, and how. This interaction is predicted to be necessary for proper DSB repair.

Q3: We will determine how DNA cleavage is activated. We will do this through in vitro reconstitution of meiotic DSB formation.

Answering these key questions will be possible by using in vivo and in vitro approaches. We will pioneer in vitro meiotic differentiation of mouse embryonic stem cells to overcome the current limitations for identifying novel components and interactions.

We will thus decipher how a molecular machinery that has evolved from a DNA type II topoisomerase family has been selected and modified to promote a complex reaction initiated by DNA cleavage at multiple sites along chromosomes followed by their repair by homologous recombination.

Régime de financement

ERC-ADG - Advanced Grant

Institution d’accueil

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Contribution nette de l'UE
€ 2 170 000,00
Adresse
RUE MICHEL ANGE 3
75794 Paris
France

Voir sur la carte

Région
Ile-de-France Ile-de-France Paris
Type d’activité
Research Organisations
Liens
Coût total
€ 2 170 000,00

Bénéficiaires (1)