Skip to main content
Ir a la página de inicio de la Comisión Europea (se abrirá en una nueva ventana)
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Large Deviations in Random Matrix Theory

Descripción del proyecto

Desarrollo de una teoría de las grandes desviaciones para incluir funciones complejas de variables independientes

La teoría de las grandes desviaciones analiza la estimación de la probabilidad de fenómenos raros. Esta teoría puede abordar la cuestión de la rapidez con la que la probabilidad de observar un comportamiento diferente al predicho por la ley de los grandes números se reduce a cero. A pesar de los avances en este ámbito, los resultados clásicos de la teoría de las grandes desviaciones no son aplicables a funciones complejas de variables independientes, como los valores propios de las matrices aleatorias. El objetivo del proyecto financiado con fondos europeos LDRaM es desarrollar una teoría que describa una amplia variedad de modelos de matrices aleatorias. Los resultados del proyecto tendrán repercusiones de calado tanto para la teoría de la probabilidad y el álgebra de operadores como para la física teórica, la estadística y el aprendizaje estadístico.

Objetivo

Large deviations theory develops the art of estimating the probability of rare events. The classical theory concentrates on the study of the probability of deviating from the behavior predicted by the law of large numbers, namely the probability that the empirical mean of independent variables differs from its expectation. Such a classical framework does not apply in random matrix theory where one deals with complicated functions of independent variables or strongly interacting random variables, for instance the eigenvalues of a matrix with independent entries. During the last twenty years, important advances allowed to analyze large deviations for a few specific models of random matrices, but a full understanding of these questions is still missing. The object of this project is to develop such a theory. Two notable examples motivate this project. The first is to understand how the distribution of the entries of a random matrix affects the probability of the rare events of its spectrum as its dimension goes to infinity. The second is to prove in great generality the convergence of matrix integrals and Voiculescu's microstates entropy, as well as analyze their limit. The impact of this project would go beyond probability and operator algebra as it would apply to other fields such as theoretical physics, statistics and statistical learning.

Ámbito científico (EuroSciVoc)

CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural. Véas: El vocabulario científico europeo..

Para utilizar esta función, debe iniciar sesión o registrarse

Programa(s)

Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.

Tema(s)

Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.

Régimen de financiación

Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.

ERC-ADG - Advanced Grant

Ver todos los proyectos financiados en el marco de este régimen de financiación

Convocatoria de propuestas

Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.

(se abrirá en una nueva ventana) ERC-2019-ADG

Ver todos los proyectos financiados en el marco de esta convocatoria

Institución de acogida

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Aportación neta de la UEn

Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.

€ 2 384 537,50
Coste total

Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.

€ 2 384 537,50

Beneficiarios (1)

Mi folleto 0 0